Multipaction,caused by the secondary electron emission phenomenon,has been a challenge in space applications due to the resulting degradation of system performance as well as the reduction in the service life of high ...Multipaction,caused by the secondary electron emission phenomenon,has been a challenge in space applications due to the resulting degradation of system performance as well as the reduction in the service life of high power components.In this paper we report a novel approach to realize an effective increase in the multipaction threshold by employing micro-porous surfaces.Two micro-porous structures,i.e.,a regular micro-porous array fabricated by photolithography pattern processing and an irregular micro-porous array fabricated by a direct chemical etching technique,are proposed for suppressing the secondary electron yield(SEY) and multipaction in components,and the benefits are validated both theoretically and experimentally.These surface processing technologies are compatible with the metal plating process,and offer substantial flexibility and accuracy in topology design.The suppression effect is quantified for the first time through the proper fitting of the surface morphology and the corresponding secondary emission properties.Insertion losses when using these structures decrease dramatically compared with regular millimeter-scale structures on high power dielectric windows.SEY tests on samples show that the maximum yield of Ag-plated samples is reduced from 2.17 to 1.58 for directly chemical etched samples.Multipaction testing of actual C-band impedance transformers shows that the discharge thresholds of the processed components increase from 2100 W to 5500 W for photolithography pattern processing and 7200 W for direct chemical etching,respectively.Insertion losses increase from 0.13 d B to only 0.15 d B for both surface treatments in the transmission band.The experimental results agree well with the simulation results,which offers great potential in the quantitative anti-multipaction design of high power microwave components for space applications.展开更多
针对无源互调干扰信号的时变性和间断性特点,提出了利用低密度奇偶校验(Low Density Parity Check,LDPC)码抗突发差错的特性来减弱无源互调干扰影响的方法。文章设计了LDPC编译码方案,采用了基于准循环矩阵的编码方案,并着重分析了译码...针对无源互调干扰信号的时变性和间断性特点,提出了利用低密度奇偶校验(Low Density Parity Check,LDPC)码抗突发差错的特性来减弱无源互调干扰影响的方法。文章设计了LDPC编译码方案,采用了基于准循环矩阵的编码方案,并着重分析了译码环节,译码算法最终选定具有低迭代时延特点的基于行信息传递(Row Message Passing,RMP)调度的最小和译码算法。译码仿真结果显示,用占空比为10%的脉冲模拟无源互调干扰,信噪比为3.1dB时,编码增益约为8.2dB。实测结果显示,信干比为2dB时,带有LDPC编码的系统误码率为0.002 69,信干比增益超过10dB。展开更多
针对航天有效载荷微波部件频发的微放电现象,采用微陷阱表面构型来抑制微波材料表面的二次电子发射,从而达到微放电抑制效果。通过硅基材料的表面刻蚀和金属Ag的表面溅射获得规整的金属表面微陷阱结构,将表面处理过的金属样品在二次电...针对航天有效载荷微波部件频发的微放电现象,采用微陷阱表面构型来抑制微波材料表面的二次电子发射,从而达到微放电抑制效果。通过硅基材料的表面刻蚀和金属Ag的表面溅射获得规整的金属表面微陷阱结构,将表面处理过的金属样品在二次电子发射平台的电子枪20~4 000 e V照射下,采用电流法获得金属微陷阱表面的二次电子产额曲线及抑制特性。此外,通过将表面出射的二次电子分为弹性背散射电子、非弹性背散射电子和本征二次电子,并跟踪电子在陷阱结构内的级联再入射过程,建立表面圆柱孔和矩形槽微陷阱表面的二次电子发射数值模型,模拟结果与测试结果能很好吻合。采用数值模拟的方法构造不同深宽比的微陷阱结构表面,最大二次电子产额、第一交叉能量以及微放电品质因子的变化规律。研究结果表明:陷阱结构的侧壁遮挡效果能有效抑制二次电子从表面发射,并且深宽比越大的表面陷阱结构抑制效果更强,而在相同深宽比情况下,圆柱孔陷阱结构比矩形槽陷阱结构对二次电子的抑制效果更好,此外,陷阱结构的深宽比不仅能使得最大二次电子产额减小、第一交叉能量增大,还会近线性地增大材料的微放电品质因子F。展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.U1537211)the National Key Laboratory Key Foundation,China(Grant No.9140C530101150C53011)China Postdoctoral Science Foundation(Grant No.2015M572661XB)
文摘Multipaction,caused by the secondary electron emission phenomenon,has been a challenge in space applications due to the resulting degradation of system performance as well as the reduction in the service life of high power components.In this paper we report a novel approach to realize an effective increase in the multipaction threshold by employing micro-porous surfaces.Two micro-porous structures,i.e.,a regular micro-porous array fabricated by photolithography pattern processing and an irregular micro-porous array fabricated by a direct chemical etching technique,are proposed for suppressing the secondary electron yield(SEY) and multipaction in components,and the benefits are validated both theoretically and experimentally.These surface processing technologies are compatible with the metal plating process,and offer substantial flexibility and accuracy in topology design.The suppression effect is quantified for the first time through the proper fitting of the surface morphology and the corresponding secondary emission properties.Insertion losses when using these structures decrease dramatically compared with regular millimeter-scale structures on high power dielectric windows.SEY tests on samples show that the maximum yield of Ag-plated samples is reduced from 2.17 to 1.58 for directly chemical etched samples.Multipaction testing of actual C-band impedance transformers shows that the discharge thresholds of the processed components increase from 2100 W to 5500 W for photolithography pattern processing and 7200 W for direct chemical etching,respectively.Insertion losses increase from 0.13 d B to only 0.15 d B for both surface treatments in the transmission band.The experimental results agree well with the simulation results,which offers great potential in the quantitative anti-multipaction design of high power microwave components for space applications.
文摘针对航天有效载荷微波部件频发的微放电现象,采用微陷阱表面构型来抑制微波材料表面的二次电子发射,从而达到微放电抑制效果。通过硅基材料的表面刻蚀和金属Ag的表面溅射获得规整的金属表面微陷阱结构,将表面处理过的金属样品在二次电子发射平台的电子枪20~4 000 e V照射下,采用电流法获得金属微陷阱表面的二次电子产额曲线及抑制特性。此外,通过将表面出射的二次电子分为弹性背散射电子、非弹性背散射电子和本征二次电子,并跟踪电子在陷阱结构内的级联再入射过程,建立表面圆柱孔和矩形槽微陷阱表面的二次电子发射数值模型,模拟结果与测试结果能很好吻合。采用数值模拟的方法构造不同深宽比的微陷阱结构表面,最大二次电子产额、第一交叉能量以及微放电品质因子的变化规律。研究结果表明:陷阱结构的侧壁遮挡效果能有效抑制二次电子从表面发射,并且深宽比越大的表面陷阱结构抑制效果更强,而在相同深宽比情况下,圆柱孔陷阱结构比矩形槽陷阱结构对二次电子的抑制效果更好,此外,陷阱结构的深宽比不仅能使得最大二次电子产额减小、第一交叉能量增大,还会近线性地增大材料的微放电品质因子F。