Frequency-modulated continuous-wave(FMCW)Lidar has the characteristics of high-ranging accuracy,noise immunity,and synchronous speed measurement,which makes it a candidate for the next generation of vehicle Lidar.In t...Frequency-modulated continuous-wave(FMCW)Lidar has the characteristics of high-ranging accuracy,noise immunity,and synchronous speed measurement,which makes it a candidate for the next generation of vehicle Lidar.In this work,an FMCW Lidar working at the single-photon level is demonstrated based on quantum compressed sensing,and the target distance is recovered from the sparse photon detection,in which the detection sensitivity,bandwidth,and compression ratio are improved significantly.Our Lidar system can achieve 3 GHz bandwidth detection at photon count rates of a few thousand,making ultra-long-distance FMCW Lidar possible.展开更多
Laser-induced fluorescence excitation spectra of jet-cooled NiS molecules were recorded in the energy range of 12200-13550 cm^-1. Four vibronic bands with rotational structure have been observed and assigned to the [1...Laser-induced fluorescence excitation spectra of jet-cooled NiS molecules were recorded in the energy range of 12200-13550 cm^-1. Four vibronic bands with rotational structure have been observed and assigned to the [12.4]^3∑-0-X^3∑0 transition progression. The relevant rotational constants, significant isotopic shifts, and (equilibrium) molecular parameters have been determined. In addition, the lifetimes of the observed bands have also been measured.展开更多
Laser-induced fluorescence excitation spectra of jet-cooled CoS molecules have been recorded in the energy range of 15200-19000 cm^-1. Five transition progressions have been reported for the first time, the assignment...Laser-induced fluorescence excitation spectra of jet-cooled CoS molecules have been recorded in the energy range of 15200-19000 cm^-1. Five transition progressions have been reported for the first time, the assignments of these progressions have been derived from a rotational analysis of vibronic bands and they are determined to be [15.58]^4△7/2-X^4△7/2, [16.02]^4△7/2- X^4△7/2, [16.50]^4△7/2-X^4△T/2, [17.80]^4II5/2-X^4△7/2, and [18.00]^4△7/2-X^4△7/2 transitions. In addition, under the supersonic jet condition the fluorescent lifetimes of these vibronic states were measured by exponentially fitting the fluorescence decay. Based on the observed spectra and the measured lifetimes of the vibronic states, the newly identified electronic states are discussed.展开更多
Absorption spectra of jet-cooled PH2 radicals were recorded in the wavelength range of 465- 555 nm using cavity ringdown spectroscopy. The PH2 radicals were produced in a supersonic jet by pulsed direct current discha...Absorption spectra of jet-cooled PH2 radicals were recorded in the wavelength range of 465- 555 nm using cavity ringdown spectroscopy. The PH2 radicals were produced in a supersonic jet by pulsed direct current discharge of a mixture of PHa and SF6 in argon. Seven vibronic bands with fine rotational structures have been observed and assigned as 0 0^, 2 0^n, and 2 1^n (n=1- 3) bands of the A^2A1- X~ 2B1 electronic transition. Rotational assignments and rotational term values for each band were re-identified, and the molecular parameters including rotational constants, centrifugal distortion constants, and spin-rotation interaction constants were also improved with reasonably high precision. In addition, large perturbations observed in each quantum number of total angular momentum of the a axis level of the excited vibronic states were briefly discussed.展开更多
We present a first velocity map imaging study on the 234 nm photodissociation dynamics of two carbon-chain branched alkyl bromides, neopentyl bromide (denoted as NPB) and tert- pentyl bromide (denoted as TPB). Unl...We present a first velocity map imaging study on the 234 nm photodissociation dynamics of two carbon-chain branched alkyl bromides, neopentyl bromide (denoted as NPB) and tert- pentyl bromide (denoted as TPB). Unlike the 234 nm photodissociation of the unbranched n-C5H11Br molecule where only a direct fission of the C-Br bond is involved, the branched NPB and TPB molecules exhibit one and two more independent dissociation pathways with much energy being decayed via an extensive excitation of the bending modes of the parent molecules prior to the C-Br bond fission. This observation strongly suggests that the dissociation coordinate for the two carbon-chain branched molecules is no longer solely ascribed to the C-Br stretching mode but rather a combination of the bending-stretching modes.展开更多
The laser-induced fluorescence excitation spectra of jet-cooled NiB radicals have been recorded in the energy range of 19000-22100 cm-1. Eleven bands have been assigned to the [20.77]2П-X2∑+ transition system for t...The laser-induced fluorescence excitation spectra of jet-cooled NiB radicals have been recorded in the energy range of 19000-22100 cm-1. Eleven bands have been assigned to the [20.77]2П-X2∑+ transition system for the first time. The dispersed fluorescence spectra related to most of these bands have been investigated. Vibrationally excited levels of the ground electronic state, with v" up to 6, have been observed. In addition, the lifetimes for almost all the observed bands have also been measured.展开更多
The burgeoning two-dimensional(2D)layered materials provide a powerful strategy to realize efficient light-emitting devices.Among them,gallium telluride(Ga Te)nanoflakes,showing strong photoluminescence(PL)emission fr...The burgeoning two-dimensional(2D)layered materials provide a powerful strategy to realize efficient light-emitting devices.Among them,gallium telluride(Ga Te)nanoflakes,showing strong photoluminescence(PL)emission from multilayer to bulk crystal,relax the stringent fabrication requirements of nanodevices.However,detailed knowledge on the optical properties of Ga Te varies as layer thickness is still missing.Here we perform thickness-dependent PL and Raman spectra,as well as temperature-dependent PL spectra of Ga Te nanoflakes.Spectral analysis reveals a spectroscopic signature for the coexistence of both the monoclinic and hexagonal phases in Ga Te nanoflakes.To understand the experimental results,we propose a crystal structure where the hexagonal phase is on the top and bottom of nanoflakes while the monoclinic phase is in the middle of the nanoflakes.On the basis of temperature-dependent PL spectra,the optical gap of the hexagonal phase is determined to be 1.849 eV,which can only survive under temperature higher than 200 K with the increasing phonon population.Furthermore,the strength of exciton-phonon interaction of the hexagonal phase is estimated to be 1.24 me V/K.Our results prove the coexistence of dual crystalline phases in multilayer Ga Te nanoflakes,which may provoke further exploration of phase transformation in Ga Te materials,as well as new applications in 2D light-emitting diodes and heterostructure-based optoelectronics.展开更多
Thermionic emission is a tunneling phenomenon,which depicts that electrons on the surface of a conductor can be pulled out into the vacuum when they are subjected to high electrical tensions while being heated hot eno...Thermionic emission is a tunneling phenomenon,which depicts that electrons on the surface of a conductor can be pulled out into the vacuum when they are subjected to high electrical tensions while being heated hot enough to overtake their work functions.This principle has led to the great success of the so-called vacuum tubes in the early 20 th century.To date,major challenges still remain in the miniaturization of a vacuum channel transistor for on-chip integration in modern solid-state integrated circuits.Here,by introducing nano-sized vacuum gaps(~200 nm)in a van der Waals heterostructure,we successfully fabricated a one-dimensional(1 D)edge-to-edge thermionic emission vacuum tube using graphene as the filament.With the increasing collector voltage,the emitted current exhibits a typical rectifying behavior,with the maximum emission current reaching 200 p A and an ON-OFF ratio of 10;.In addition,it is found that the maximum emission current is proportional to the number of the layers of graphene.Our results expand the research of nano-sized vacuum tubes to an unexplored physical limit of 1 D edge-to-edge emission,and hold great promise for future nano-electronic systems based on it.展开更多
基金supported by the National Natural Science Foundation of China(Nos.62105193,62127817,62075120,62075122,U22A2091,62222509,62205187,and 62305200)the Shanxi Province Science and Technology Major Special Project(No.202201010101005)+5 种基金the National Key Research and Development Program of China(No.2022YFA1404201)the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT_17R70)the China Postdoctoral Science Foundation(No.2022M722006)the Shanxi Province Science and Technology Innovation Talent Team(No.202204051001014)the Science and Technology Cooperation Project of Shanxi Province(No.202104041101021)the Shanxi“1331 Project”and 111 Project(No.D18001).
文摘Frequency-modulated continuous-wave(FMCW)Lidar has the characteristics of high-ranging accuracy,noise immunity,and synchronous speed measurement,which makes it a candidate for the next generation of vehicle Lidar.In this work,an FMCW Lidar working at the single-photon level is demonstrated based on quantum compressed sensing,and the target distance is recovered from the sparse photon detection,in which the detection sensitivity,bandwidth,and compression ratio are improved significantly.Our Lidar system can achieve 3 GHz bandwidth detection at photon count rates of a few thousand,making ultra-long-distance FMCW Lidar possible.
基金This work was supported by the National Natural Science Foundation of China (No.21273212 and No.21173205), the National Key Basic Research Program of China (No.2010CB923302), the Chinese Academy of Sciences (No.KJCX2-YW-N24), the Fundamental Research Funds for the Central Universities of China (No.WK2340000012), and the University of Science and Technology of China-National Synchrotron Radiation Laboratory (No.KY2340000021).
文摘Laser-induced fluorescence excitation spectra of jet-cooled NiS molecules were recorded in the energy range of 12200-13550 cm^-1. Four vibronic bands with rotational structure have been observed and assigned to the [12.4]^3∑-0-X^3∑0 transition progression. The relevant rotational constants, significant isotopic shifts, and (equilibrium) molecular parameters have been determined. In addition, the lifetimes of the observed bands have also been measured.
文摘Laser-induced fluorescence excitation spectra of jet-cooled CoS molecules have been recorded in the energy range of 15200-19000 cm^-1. Five transition progressions have been reported for the first time, the assignments of these progressions have been derived from a rotational analysis of vibronic bands and they are determined to be [15.58]^4△7/2-X^4△7/2, [16.02]^4△7/2- X^4△7/2, [16.50]^4△7/2-X^4△T/2, [17.80]^4II5/2-X^4△7/2, and [18.00]^4△7/2-X^4△7/2 transitions. In addition, under the supersonic jet condition the fluorescent lifetimes of these vibronic states were measured by exponentially fitting the fluorescence decay. Based on the observed spectra and the measured lifetimes of the vibronic states, the newly identified electronic states are discussed.
基金This work was supported by the National Natural Science Foundation of China (No.20673107), the National Key Basic Research Special Foundation of China (No.2007CB815203), and the Chinese Academy of Sciences (No.KJCX2-SW-H08).
文摘Absorption spectra of jet-cooled PH2 radicals were recorded in the wavelength range of 465- 555 nm using cavity ringdown spectroscopy. The PH2 radicals were produced in a supersonic jet by pulsed direct current discharge of a mixture of PHa and SF6 in argon. Seven vibronic bands with fine rotational structures have been observed and assigned as 0 0^, 2 0^n, and 2 1^n (n=1- 3) bands of the A^2A1- X~ 2B1 electronic transition. Rotational assignments and rotational term values for each band were re-identified, and the molecular parameters including rotational constants, centrifugal distortion constants, and spin-rotation interaction constants were also improved with reasonably high precision. In addition, large perturbations observed in each quantum number of total angular momentum of the a axis level of the excited vibronic states were briefly discussed.
基金This work was supported by the National Natural Science Foundation of China (No.20873133), the Ministry of Science and Technology of China (No.2007CB815203 and No.2010CB923302), the Chinese Academy of Sciences (No.KJCX2-YW-N24 and No.KJCX2-EW-W09), the Fundamental Research Funds for the Central Universities of China (No.WK2340000012), and the USTC-NSRL Joint Funds (No.KY2340000021).
文摘We present a first velocity map imaging study on the 234 nm photodissociation dynamics of two carbon-chain branched alkyl bromides, neopentyl bromide (denoted as NPB) and tert- pentyl bromide (denoted as TPB). Unlike the 234 nm photodissociation of the unbranched n-C5H11Br molecule where only a direct fission of the C-Br bond is involved, the branched NPB and TPB molecules exhibit one and two more independent dissociation pathways with much energy being decayed via an extensive excitation of the bending modes of the parent molecules prior to the C-Br bond fission. This observation strongly suggests that the dissociation coordinate for the two carbon-chain branched molecules is no longer solely ascribed to the C-Br stretching mode but rather a combination of the bending-stretching modes.
文摘The laser-induced fluorescence excitation spectra of jet-cooled NiB radicals have been recorded in the energy range of 19000-22100 cm-1. Eleven bands have been assigned to the [20.77]2П-X2∑+ transition system for the first time. The dispersed fluorescence spectra related to most of these bands have been investigated. Vibrationally excited levels of the ground electronic state, with v" up to 6, have been observed. In addition, the lifetimes for almost all the observed bands have also been measured.
基金supported by the National Natural Science Foundation of China(No.91950109 and 61875109)the Natural Science Foundation of Shanxi Province(No.201901D111010(ZD))Postgraduate Education Innovation Project of Shanxi Province(No.2019SY052 and No.2020BY022)。
文摘The burgeoning two-dimensional(2D)layered materials provide a powerful strategy to realize efficient light-emitting devices.Among them,gallium telluride(Ga Te)nanoflakes,showing strong photoluminescence(PL)emission from multilayer to bulk crystal,relax the stringent fabrication requirements of nanodevices.However,detailed knowledge on the optical properties of Ga Te varies as layer thickness is still missing.Here we perform thickness-dependent PL and Raman spectra,as well as temperature-dependent PL spectra of Ga Te nanoflakes.Spectral analysis reveals a spectroscopic signature for the coexistence of both the monoclinic and hexagonal phases in Ga Te nanoflakes.To understand the experimental results,we propose a crystal structure where the hexagonal phase is on the top and bottom of nanoflakes while the monoclinic phase is in the middle of the nanoflakes.On the basis of temperature-dependent PL spectra,the optical gap of the hexagonal phase is determined to be 1.849 eV,which can only survive under temperature higher than 200 K with the increasing phonon population.Furthermore,the strength of exciton-phonon interaction of the hexagonal phase is estimated to be 1.24 me V/K.Our results prove the coexistence of dual crystalline phases in multilayer Ga Te nanoflakes,which may provoke further exploration of phase transformation in Ga Te materials,as well as new applications in 2D light-emitting diodes and heterostructure-based optoelectronics.
基金supported by the National Natural Science Foundation of China(Grant Nos.12004389,12004288,and 12104462)the China Postdoctoral Science Foundation(Grant Nos.2020M68036 and 2021T140430)+1 种基金the support from the Joint Research Fund of Liaoning-Shenyang National Laboratory for Materials Science(Grant No.2019JH3/30100031)the support from the IMR Innovation Fund(Grant No.2021-PY17)。
文摘Thermionic emission is a tunneling phenomenon,which depicts that electrons on the surface of a conductor can be pulled out into the vacuum when they are subjected to high electrical tensions while being heated hot enough to overtake their work functions.This principle has led to the great success of the so-called vacuum tubes in the early 20 th century.To date,major challenges still remain in the miniaturization of a vacuum channel transistor for on-chip integration in modern solid-state integrated circuits.Here,by introducing nano-sized vacuum gaps(~200 nm)in a van der Waals heterostructure,we successfully fabricated a one-dimensional(1 D)edge-to-edge thermionic emission vacuum tube using graphene as the filament.With the increasing collector voltage,the emitted current exhibits a typical rectifying behavior,with the maximum emission current reaching 200 p A and an ON-OFF ratio of 10;.In addition,it is found that the maximum emission current is proportional to the number of the layers of graphene.Our results expand the research of nano-sized vacuum tubes to an unexplored physical limit of 1 D edge-to-edge emission,and hold great promise for future nano-electronic systems based on it.