针对结构化道路的特点,提出一种实用的基于组合模型的车道线自动识别方法。近视场区域采用Hough变换初始检测车道线,远视场区域采用三次曲线模型拟合车道线。车道跟踪用Kalman预测参数动态建立ROI(region of interest),用扫描线法搜索...针对结构化道路的特点,提出一种实用的基于组合模型的车道线自动识别方法。近视场区域采用Hough变换初始检测车道线,远视场区域采用三次曲线模型拟合车道线。车道跟踪用Kalman预测参数动态建立ROI(region of interest),用扫描线法搜索车道线边界点,在车道线间断处用Kalman预测器定位车道线边界,还设计了一个失效判别模块来验证跟踪结果。最后将投影图中检测到的车道线进行逆投影重建,得到实际路面的车道线。实验结果表明,对于不同的车道线种类和在部分车道线被前方车辆遮挡的条件下,该算法均具有较高的实时性和鲁棒性。展开更多
提出了一种针对高速公路的车道线检测与跟踪方法;在图像预处理中采用基于采样的自适应阈值以满足不同光照条件下的使用要求,采用霍夫变换(HT,Hough Transform)进行车道线初始检测,车道线跟踪利用Kalman预测参数动态建立感兴趣区域(ROI,R...提出了一种针对高速公路的车道线检测与跟踪方法;在图像预处理中采用基于采样的自适应阈值以满足不同光照条件下的使用要求,采用霍夫变换(HT,Hough Transform)进行车道线初始检测,车道线跟踪利用Kalman预测参数动态建立感兴趣区域(ROI,Region of Interest),用扫描线法搜索车道线边界点,在车道线间断区域利用Kalman预测器定位车道线边界;设计了一个失效判别模块,验证跟踪结果,当跟踪失败时,重新启动初始检测算法进行识别;实验结果表明,对于不同的车道线种类和在大部分车道线被前方车辆遮挡的条件下,该算法均具有较高的实时性和鲁棒性。展开更多
文摘针对结构化道路的特点,提出一种实用的基于组合模型的车道线自动识别方法。近视场区域采用Hough变换初始检测车道线,远视场区域采用三次曲线模型拟合车道线。车道跟踪用Kalman预测参数动态建立ROI(region of interest),用扫描线法搜索车道线边界点,在车道线间断处用Kalman预测器定位车道线边界,还设计了一个失效判别模块来验证跟踪结果。最后将投影图中检测到的车道线进行逆投影重建,得到实际路面的车道线。实验结果表明,对于不同的车道线种类和在部分车道线被前方车辆遮挡的条件下,该算法均具有较高的实时性和鲁棒性。
文摘提出了一种针对高速公路的车道线检测与跟踪方法;在图像预处理中采用基于采样的自适应阈值以满足不同光照条件下的使用要求,采用霍夫变换(HT,Hough Transform)进行车道线初始检测,车道线跟踪利用Kalman预测参数动态建立感兴趣区域(ROI,Region of Interest),用扫描线法搜索车道线边界点,在车道线间断区域利用Kalman预测器定位车道线边界;设计了一个失效判别模块,验证跟踪结果,当跟踪失败时,重新启动初始检测算法进行识别;实验结果表明,对于不同的车道线种类和在大部分车道线被前方车辆遮挡的条件下,该算法均具有较高的实时性和鲁棒性。