为了研究不同的风量条件对煤自燃极限参数的影响,采用煤自燃程序升温实验系统,测试了5种不同风量条件下煤样的耗氧速率、CO产生率、CO_2产生率和放热强度,在此基础上计算煤自燃极限参数并分析其变化规律。实验结果表明:不同的供风量导...为了研究不同的风量条件对煤自燃极限参数的影响,采用煤自燃程序升温实验系统,测试了5种不同风量条件下煤样的耗氧速率、CO产生率、CO_2产生率和放热强度,在此基础上计算煤自燃极限参数并分析其变化规律。实验结果表明:不同的供风量导致煤体的氧化放热强度不同,在风量为60 m L/min的情况下煤体放热强度最大;煤自燃极限参数随风量的变化可以分为2个阶段:风量在40 m L/min之前,煤样的最小浮煤厚度和下限氧浓度均随风量的增加而减小,煤样的上限漏风强度随风量的增加而增加。风量在40 m L/min之后,最小浮煤厚度和下限氧浓度随风量的增加近似呈线性增加,上限漏风强度随风量的增加近似呈线性减小,说明在井下开采过程中要注意风量的调节,使煤的自燃极限参数向不利于煤自燃的方向发展。展开更多
文摘为了研究不同的风量条件对煤自燃极限参数的影响,采用煤自燃程序升温实验系统,测试了5种不同风量条件下煤样的耗氧速率、CO产生率、CO_2产生率和放热强度,在此基础上计算煤自燃极限参数并分析其变化规律。实验结果表明:不同的供风量导致煤体的氧化放热强度不同,在风量为60 m L/min的情况下煤体放热强度最大;煤自燃极限参数随风量的变化可以分为2个阶段:风量在40 m L/min之前,煤样的最小浮煤厚度和下限氧浓度均随风量的增加而减小,煤样的上限漏风强度随风量的增加而增加。风量在40 m L/min之后,最小浮煤厚度和下限氧浓度随风量的增加近似呈线性增加,上限漏风强度随风量的增加近似呈线性减小,说明在井下开采过程中要注意风量的调节,使煤的自燃极限参数向不利于煤自燃的方向发展。