We develop a physies-based charge-control lnP double hereto junction bipolar transistor model including three important effects: current blocking, mobile-charge modulation of the base-collector capacitance and veloci...We develop a physies-based charge-control lnP double hereto junction bipolar transistor model including three important effects: current blocking, mobile-charge modulation of the base-collector capacitance and velocity-field modulation in the transit time. The bias-dependent base-collector depletion charge is obtained analytically, which takes into account the mobile-charge modulation. Then, a measurement based voltage-dependent transit time formulation is implemented. As a result, over a wide range of biases, the developed model shows good agreement between the modeled and measured S-parameters and cutoff frequency. Also, the model considering current blocking effect demonstrates more accurate prediction of the output characteristics than conventional vertical bipolar inter company results.展开更多
An lnGaP/GaAs HBT microwave power transistor with on-chip parallel RC stabilization network is developed with a standard GaAs MMIC process. From the stability factor K, the device shows unconditional stability in a wi...An lnGaP/GaAs HBT microwave power transistor with on-chip parallel RC stabilization network is developed with a standard GaAs MMIC process. From the stability factor K, the device shows unconditional stability in a wide frequency range due to the RC network. The power characteristics of the device as measured by a loadpull system show that the large-signal performance of the power transistor is affected slightly by the RC network. Psat is 30dBm at 5.4GHz,and PldB is larger than 21.6dBm at llGHz. The stability of the device due to RC network is proved by a power combination circuit. This makes the power transistor very suitable for applications in microwavc high power ttBT amplifiers.展开更多
从物理机制上分析了超高速InP/InGaAs SHBT碰撞电离与温度的关系,通过加入表示温度的参数和简化电场计算,得到一种改进的碰撞电离模型.同时针对自有工艺和器件特性,采用SDD(symbolically defined device)技术建立了一个包括碰撞电离和...从物理机制上分析了超高速InP/InGaAs SHBT碰撞电离与温度的关系,通过加入表示温度的参数和简化电场计算,得到一种改进的碰撞电离模型.同时针对自有工艺和器件特性,采用SDD(symbolically defined device)技术建立了一个包括碰撞电离和自热效应的InP/InGaAs SHBT的直流模型.模型内嵌入HP-ADS中仿真并与测试结果进行比较,准确地拟合了InP/InGaAs SHBT的器件特性.展开更多
A MIC power amplifier with power combining based on InGaP/GaAs HBT is developed and measured for the application of the latest high power amplifier stage of the X-band. A novel InGaP/GaAs HBT power transistor with an ...A MIC power amplifier with power combining based on InGaP/GaAs HBT is developed and measured for the application of the latest high power amplifier stage of the X-band. A novel InGaP/GaAs HBT power transistor with an on-chip RC stabilization network is used as the power combing cell to improve the stability of the circuit. A compact mi- crostripe line parallel matching network is used to divide and combine the power. By biasing the amplifier at class AB: Vc= 7V, Ic = 230mA,a maximum CW stabile output power of 28.9dBm and a power combine efficiency of 80% are achieved at 8. 1GHz.展开更多
Static frequency dividers are widely used as a circuit performance benchmark or figure-of-merit indicator to gauge a particular device technology’s ability to implement high speed digital and integrated high performa...Static frequency dividers are widely used as a circuit performance benchmark or figure-of-merit indicator to gauge a particular device technology’s ability to implement high speed digital and integrated high performance mixed-signal circuits.We report a 2:1 static frequency divider in InGaAs/InP heterojunction bipolar transistor technology.This is the first InP based digital integrated circuit ever reported on the mainland of China. The divider is implemented in differential current mode logic(CML) with 30 transistors.The circuit operated at a peak clock frequency of 40 GHz and dissipated 650 mW from a single -5 V supply.展开更多
A W-band frequency doubler MMIC is designed and fabricated using 1-μm InP DHBT technology. Ac tive halun is employed to transform the single-ended signal into differential output. Push-push configuration loaded with ...A W-band frequency doubler MMIC is designed and fabricated using 1-μm InP DHBT technology. Ac tive halun is employed to transform the single-ended signal into differential output. Push-push configuration loaded with harmonic resonant network is utilized to acquire the second harmonic frequency. A multi-stage differential structure improves the conversion gain and suppresses the fundamental frequency. The MMIC occupies an area of 0.55 x 0.5 mm2 with 18 DHBTs integrated. Measurements show that the output power is above 5.8 dBm with the suppression of fundamental frequency below -16 dBc and the conversion Rain above 4.7 dB over 75-80 GHz.展开更多
Type-II GaAsSb/InP DHBTs with selectively-etched InGaAsP ledge structures are fabricated and characterized for the first time. The novel InGaAsP/GaAsSb/InP DHBTs with a 20nm lattice-matched GaAsSb base and a 75 nm InP...Type-II GaAsSb/InP DHBTs with selectively-etched InGaAsP ledge structures are fabricated and characterized for the first time. The novel InGaAsP/GaAsSb/InP DHBTs with a 20nm lattice-matched GaAsSb base and a 75 nm InP collector have a dc current gain improvement by a factor of 2 and a cutoff frequency fT of 190 GHz. The InGaAsP ledge design provides a simple but effective approach to suppress the extrinsic base surface recombination and enable GaAsSb/InP DHBTs to further increase the operating frequencies and integration levels for millimeter wave applications.展开更多
We fabricated 88 nm gate-length InP-based InAlAs/InGaAs high electron mobility transistors(HEMTs) with a current gain cutoff frequency of 100 GHz and a maximum oscillation frequency of 185 GHz.The characteristics of...We fabricated 88 nm gate-length InP-based InAlAs/InGaAs high electron mobility transistors(HEMTs) with a current gain cutoff frequency of 100 GHz and a maximum oscillation frequency of 185 GHz.The characteristics of HEMTs with side-etched region lengths(L_(Side)) of 300,412 and 1070 nm were analyzed.With the increase in L_(Side),the kink effect became notable in the DC characteristics,which resulted from the surface state and the effect of impact ionization.The kink effect was qualitatively explained through energy band diagrams,and then eased off by reducing the L_(Side).Meanwhile,the L_(Side) dependence of the radio frequency characteristics,which were influenced by the parasitic capacitance,as well as the parasitic resistance of the source and drain,was studied.This work will be of great importance in fabricating high-performance InP HEMTs.展开更多
文摘We develop a physies-based charge-control lnP double hereto junction bipolar transistor model including three important effects: current blocking, mobile-charge modulation of the base-collector capacitance and velocity-field modulation in the transit time. The bias-dependent base-collector depletion charge is obtained analytically, which takes into account the mobile-charge modulation. Then, a measurement based voltage-dependent transit time formulation is implemented. As a result, over a wide range of biases, the developed model shows good agreement between the modeled and measured S-parameters and cutoff frequency. Also, the model considering current blocking effect demonstrates more accurate prediction of the output characteristics than conventional vertical bipolar inter company results.
文摘An lnGaP/GaAs HBT microwave power transistor with on-chip parallel RC stabilization network is developed with a standard GaAs MMIC process. From the stability factor K, the device shows unconditional stability in a wide frequency range due to the RC network. The power characteristics of the device as measured by a loadpull system show that the large-signal performance of the power transistor is affected slightly by the RC network. Psat is 30dBm at 5.4GHz,and PldB is larger than 21.6dBm at llGHz. The stability of the device due to RC network is proved by a power combination circuit. This makes the power transistor very suitable for applications in microwavc high power ttBT amplifiers.
文摘A MIC power amplifier with power combining based on InGaP/GaAs HBT is developed and measured for the application of the latest high power amplifier stage of the X-band. A novel InGaP/GaAs HBT power transistor with an on-chip RC stabilization network is used as the power combing cell to improve the stability of the circuit. A compact mi- crostripe line parallel matching network is used to divide and combine the power. By biasing the amplifier at class AB: Vc= 7V, Ic = 230mA,a maximum CW stabile output power of 28.9dBm and a power combine efficiency of 80% are achieved at 8. 1GHz.
文摘Static frequency dividers are widely used as a circuit performance benchmark or figure-of-merit indicator to gauge a particular device technology’s ability to implement high speed digital and integrated high performance mixed-signal circuits.We report a 2:1 static frequency divider in InGaAs/InP heterojunction bipolar transistor technology.This is the first InP based digital integrated circuit ever reported on the mainland of China. The divider is implemented in differential current mode logic(CML) with 30 transistors.The circuit operated at a peak clock frequency of 40 GHz and dissipated 650 mW from a single -5 V supply.
基金supported by the National Basic Research Program of China(No.2010CB327502)
文摘A W-band frequency doubler MMIC is designed and fabricated using 1-μm InP DHBT technology. Ac tive halun is employed to transform the single-ended signal into differential output. Push-push configuration loaded with harmonic resonant network is utilized to acquire the second harmonic frequency. A multi-stage differential structure improves the conversion gain and suppresses the fundamental frequency. The MMIC occupies an area of 0.55 x 0.5 mm2 with 18 DHBTs integrated. Measurements show that the output power is above 5.8 dBm with the suppression of fundamental frequency below -16 dBc and the conversion Rain above 4.7 dB over 75-80 GHz.
文摘Type-II GaAsSb/InP DHBTs with selectively-etched InGaAsP ledge structures are fabricated and characterized for the first time. The novel InGaAsP/GaAsSb/InP DHBTs with a 20nm lattice-matched GaAsSb base and a 75 nm InP collector have a dc current gain improvement by a factor of 2 and a cutoff frequency fT of 190 GHz. The InGaAsP ledge design provides a simple but effective approach to suppress the extrinsic base surface recombination and enable GaAsSb/InP DHBTs to further increase the operating frequencies and integration levels for millimeter wave applications.
基金Project supported by the National Basic Research Program of China(No.2010CB327502)
文摘We fabricated 88 nm gate-length InP-based InAlAs/InGaAs high electron mobility transistors(HEMTs) with a current gain cutoff frequency of 100 GHz and a maximum oscillation frequency of 185 GHz.The characteristics of HEMTs with side-etched region lengths(L_(Side)) of 300,412 and 1070 nm were analyzed.With the increase in L_(Side),the kink effect became notable in the DC characteristics,which resulted from the surface state and the effect of impact ionization.The kink effect was qualitatively explained through energy band diagrams,and then eased off by reducing the L_(Side).Meanwhile,the L_(Side) dependence of the radio frequency characteristics,which were influenced by the parasitic capacitance,as well as the parasitic resistance of the source and drain,was studied.This work will be of great importance in fabricating high-performance InP HEMTs.