采用高温固相反应法合成Er3+∶Ca Mo O4多晶料,通过坩埚下降法生长出1mol%Er3+掺杂Ca Mo O4单晶;应用X射线粉末衍射证实了晶体材料的结晶物相,测试了退火前后单晶试样的透射光谱、吸收光谱、上转换荧光光谱和近红外荧光光谱,应用Judd-Of...采用高温固相反应法合成Er3+∶Ca Mo O4多晶料,通过坩埚下降法生长出1mol%Er3+掺杂Ca Mo O4单晶;应用X射线粉末衍射证实了晶体材料的结晶物相,测试了退火前后单晶试样的透射光谱、吸收光谱、上转换荧光光谱和近红外荧光光谱,应用Judd-Ofelt理论计算了Er3+∶Ca Mo O4晶体的光谱性能参数。研究表明,在980 nm激发光源作用下,从单晶试样获得较强的上转换绿色荧光发射,且呈现以1535 nm为中心波长的较宽荧光发射;经空气氛退火处理单晶试样的光学透过性得以改善,其上转换荧光发射和近红外荧光发射也得以明显增强。展开更多
文摘采用高温固相反应法合成Er3+∶Ca Mo O4多晶料,通过坩埚下降法生长出1mol%Er3+掺杂Ca Mo O4单晶;应用X射线粉末衍射证实了晶体材料的结晶物相,测试了退火前后单晶试样的透射光谱、吸收光谱、上转换荧光光谱和近红外荧光光谱,应用Judd-Ofelt理论计算了Er3+∶Ca Mo O4晶体的光谱性能参数。研究表明,在980 nm激发光源作用下,从单晶试样获得较强的上转换绿色荧光发射,且呈现以1535 nm为中心波长的较宽荧光发射;经空气氛退火处理单晶试样的光学透过性得以改善,其上转换荧光发射和近红外荧光发射也得以明显增强。