Hydrogenation, crystal structure and magnetic properties of La(Fe0.91Si0.09)13H(D)y have been studied by pressure-composition isotherms (PCI), X-ray diffraction (XRD), differential scanning calorimetry (DSC)...Hydrogenation, crystal structure and magnetic properties of La(Fe0.91Si0.09)13H(D)y have been studied by pressure-composition isotherms (PCI), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and magnetization measurements. The maximum absorption capacity is found to be 1.9 H(D) atoms per formula unit as a solid solution. All hydrides and deuterides crystallize in the NaZnl3-type cubic structure with the lattice parameter increasing linearly with H(D) concentration. The H(D) absorption enhances the Curie temperature significantly. The magnetic entropy change of the highly H-absorbed compound La(Feo.91Sio.09)13H1.81 reaches -26 J/kg-K under a magnetic field change of 5 T near the Curie temperature Tc =350 K. No observable isotope effect seems to imply that only the magnetovolume effect is responsible for the strong interplay between magnetism and lattice.展开更多
In this paper,magnetic and dielectric properties of the quasi-two-dimensional triangular-lattice system CuCrS2 and its B-site-diluted analogs CuAl1-xCrxS2(x = 0.01 and x = 0.02) are investigated.Antiferromagnetic ph...In this paper,magnetic and dielectric properties of the quasi-two-dimensional triangular-lattice system CuCrS2 and its B-site-diluted analogs CuAl1-xCrxS2(x = 0.01 and x = 0.02) are investigated.Antiferromagnetic phase transition is observed at about 38.5 K by magnetization measurement without shift induced by a small amount of doping Al.Magnetodielectric effect is found near TN in each of the three compounds.The dielectric constant decreases and the magnetocapacitance increases with the increase of substitution of nonmagnetic Al3+ ions for the magnetic Cr^3+ ions.The negative magnetocapacitive effect reaches ~ 13% for CuAl0.02Cr0.98S2.展开更多
In this paper, multiferroics and magnetocapacitive effect of triangular-lattice antiferromagnet Ag Al0.02Cr0.98S2 are investigated by magnetic, ferroelectric, pyroelectric current and dielectric measurement. We find t...In this paper, multiferroics and magnetocapacitive effect of triangular-lattice antiferromagnet Ag Al0.02Cr0.98S2 are investigated by magnetic, ferroelectric, pyroelectric current and dielectric measurement. We find that it is a multiferroic material and the magnetocapacitive effect reaches a factor of up to 90 in an external field of 7 T. The results imply the further possibility of synthesizing the magnetocapacitive materials by modifying the frustrated spin structure in terms of a few B-site doping nonmagnetic ions.展开更多
Ternary yttrium chromium sulfide,Y2CrS4,prepared by the solid-state reaction of Y2S3,Cr,and S,was found to exhibit an antiferromagnetic transition at about 64 K.The X-ray diffraction pattern at 300 K was refined with ...Ternary yttrium chromium sulfide,Y2CrS4,prepared by the solid-state reaction of Y2S3,Cr,and S,was found to exhibit an antiferromagnetic transition at about 64 K.The X-ray diffraction pattern at 300 K was refined with space group Pca2 1,and the structure parameters were determined to be a = 12.51 Ab = 7.53A,and c = 12.49A,We investigated the magnetotransport properties,and observed negative colossal magnetoresistance reaching up to 2.5 × 10^ 4 % in the semiconducting compound of Y2CrS4.展开更多
The crystallographic structure and magnetic properties of La(Fell.4Alz.6)C0.02 are studied by magnetic measurernent and powder neutron diffraction with temperature and applied magnetic field. Rietveld refinement sho...The crystallographic structure and magnetic properties of La(Fell.4Alz.6)C0.02 are studied by magnetic measurernent and powder neutron diffraction with temperature and applied magnetic field. Rietveld refinement shows that La(Fe11.4Al1.6)C0.02 crystallizes into the cubic NaZn13-type with two different Fe sites: FeI (8b) and FeII (96i), and that A1 atoms preferentially occupy the FeII site. A ferromagnetic state can he induced at a medial temperature of 39 K-139 K by an external magnetic field of 0.7 T, and a large lattice is correspondingly found at 100 K and 0.7 T. In all other conditions, La(Fe11.4Al1.6)C0.02 has no net magnetization in the paramagnetic (T 〉 TN = 182 K) or antifer- romagnetic states, and thus keeps its small lattice. Analysis of the Fe Fe bond length indicates that the ferromagnetic state prefers longer Fe-Fe distances.展开更多
基金Project supported by the National Basic Research Program of China (973 Program) (Grant No. 2010CB833102)the Knowledge Innovation Project of the Chinese Academy of Sciencesthe National Natural Science Foundation of China (Grant Nos. 10974244 and 11004204)
文摘Hydrogenation, crystal structure and magnetic properties of La(Fe0.91Si0.09)13H(D)y have been studied by pressure-composition isotherms (PCI), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and magnetization measurements. The maximum absorption capacity is found to be 1.9 H(D) atoms per formula unit as a solid solution. All hydrides and deuterides crystallize in the NaZnl3-type cubic structure with the lattice parameter increasing linearly with H(D) concentration. The H(D) absorption enhances the Curie temperature significantly. The magnetic entropy change of the highly H-absorbed compound La(Feo.91Sio.09)13H1.81 reaches -26 J/kg-K under a magnetic field change of 5 T near the Curie temperature Tc =350 K. No observable isotope effect seems to imply that only the magnetovolume effect is responsible for the strong interplay between magnetism and lattice.
基金Project supported by the National Basic Research Program of China (Grant No. 2010CB833102)the National Natural Science Foundation of China (Grant No. 10974244)
文摘In this paper,magnetic and dielectric properties of the quasi-two-dimensional triangular-lattice system CuCrS2 and its B-site-diluted analogs CuAl1-xCrxS2(x = 0.01 and x = 0.02) are investigated.Antiferromagnetic phase transition is observed at about 38.5 K by magnetization measurement without shift induced by a small amount of doping Al.Magnetodielectric effect is found near TN in each of the three compounds.The dielectric constant decreases and the magnetocapacitance increases with the increase of substitution of nonmagnetic Al3+ ions for the magnetic Cr^3+ ions.The negative magnetocapacitive effect reaches ~ 13% for CuAl0.02Cr0.98S2.
基金Project supported by the National Basic Research Program of China(Grant No.2010CB833102)the National Natural Science Foundation of China(Grant Nos.10974244+1 种基金11274369and 11104337)
文摘In this paper, multiferroics and magnetocapacitive effect of triangular-lattice antiferromagnet Ag Al0.02Cr0.98S2 are investigated by magnetic, ferroelectric, pyroelectric current and dielectric measurement. We find that it is a multiferroic material and the magnetocapacitive effect reaches a factor of up to 90 in an external field of 7 T. The results imply the further possibility of synthesizing the magnetocapacitive materials by modifying the frustrated spin structure in terms of a few B-site doping nonmagnetic ions.
基金Project supported by the National Basic Research Program of China (Grant No. 2010CB833102)the National Natural ScienceFoundation of China (Grant No. 10974244)
文摘Ternary yttrium chromium sulfide,Y2CrS4,prepared by the solid-state reaction of Y2S3,Cr,and S,was found to exhibit an antiferromagnetic transition at about 64 K.The X-ray diffraction pattern at 300 K was refined with space group Pca2 1,and the structure parameters were determined to be a = 12.51 Ab = 7.53A,and c = 12.49A,We investigated the magnetotransport properties,and observed negative colossal magnetoresistance reaching up to 2.5 × 10^ 4 % in the semiconducting compound of Y2CrS4.
基金supported by the National Basic Research Program of China (973 Program) (Grant No. 2010CB833102)the National Natural Science Foundation of China (Grant No. 10974244)
文摘The crystallographic structure and magnetic properties of La(Fell.4Alz.6)C0.02 are studied by magnetic measurernent and powder neutron diffraction with temperature and applied magnetic field. Rietveld refinement shows that La(Fe11.4Al1.6)C0.02 crystallizes into the cubic NaZn13-type with two different Fe sites: FeI (8b) and FeII (96i), and that A1 atoms preferentially occupy the FeII site. A ferromagnetic state can he induced at a medial temperature of 39 K-139 K by an external magnetic field of 0.7 T, and a large lattice is correspondingly found at 100 K and 0.7 T. In all other conditions, La(Fe11.4Al1.6)C0.02 has no net magnetization in the paramagnetic (T 〉 TN = 182 K) or antifer- romagnetic states, and thus keeps its small lattice. Analysis of the Fe Fe bond length indicates that the ferromagnetic state prefers longer Fe-Fe distances.