Plant structure, representing the physical link among different organs, includes many similar substructures. In this paper, a new method is presented to construct plant architectural models of most plant species. The ...Plant structure, representing the physical link among different organs, includes many similar substructures. In this paper, a new method is presented to construct plant architectural models of most plant species. The plant structure is decomposed into a stem, a set of lateral substructures and a terminal substructure, which is called substructure decomposition; then based on substructure decomposition, the plant structures are expressed in an iterative way; and further the derivative formula is employed to compute the number of organs in plant structures to get the geometrical sizes of 3D plant organs by borrowing Hydraulic Model. Using 3D organs, a substructure library is built. Based on the substructures stored in substructure library, one can construct 3D plant structure according to certain topological and geometrical rules. The experiments with different plant species are included in this paper to demonstrate the validity of the new method for constructing plant structures. The experimental results show that the approach follows botanical knowledge with high efficiency in constructing plant structures of most plant species. In addition,this method enables users to check the detail information of plant structure.展开更多
基金国家自然科学基金,"A study on individual virtual plant modeling and visualization")
文摘Plant structure, representing the physical link among different organs, includes many similar substructures. In this paper, a new method is presented to construct plant architectural models of most plant species. The plant structure is decomposed into a stem, a set of lateral substructures and a terminal substructure, which is called substructure decomposition; then based on substructure decomposition, the plant structures are expressed in an iterative way; and further the derivative formula is employed to compute the number of organs in plant structures to get the geometrical sizes of 3D plant organs by borrowing Hydraulic Model. Using 3D organs, a substructure library is built. Based on the substructures stored in substructure library, one can construct 3D plant structure according to certain topological and geometrical rules. The experiments with different plant species are included in this paper to demonstrate the validity of the new method for constructing plant structures. The experimental results show that the approach follows botanical knowledge with high efficiency in constructing plant structures of most plant species. In addition,this method enables users to check the detail information of plant structure.