期刊文献+

基于鉴别性与稳定性的自适应融合目标跟踪 被引量:2

Discrimination and stability based adaptive fusion for target tracking
下载PDF
导出
摘要 提出了一种基于鉴别性与稳定性的自适应融合目标跟踪算法。在跟踪中,鉴别性度量目标与背景的区分程度,稳定性衡量跟踪框中心与目标实际中心之间的偏移程度。首先,对鉴别性与稳定性分开考虑,分别建模;而后将其引入自适应融合框架中,由此得到目标函数;最后优化目标函数得到自适应融合的权重。不同视频上的对比实验验证了该算法具有更高的跟踪准确性及稳定性。 A target tracking method based on adaptive fusion was proposed, in which the fusion algorithm is derived from tracking discrimination and stability. In target tracking, discrimination measured the difference between target and background, while stability measured the deviation degree from true target center to tracking result. Algorithmically, discrimination and stability were modeled separately first. Then, they were introduced into the adaptive fusion framework, and further to formulate an object function. Finally, this object function was optimized to obtain the adaptive fusion weights. Comparative experiments on different kinds of videos show that the proposed algorithm holds higher tracking precision and stability.
出处 《计算机应用》 CSCD 北大核心 2013年第A01期166-169,173,共5页 journal of Computer Applications
基金 国家自然科学基金面上项目(61075016) 中央高校基本科研业务费专项资金资助项目
关键词 自适应融合 目标跟踪 鉴别性 稳定性 adaptive fusion target tracking discrimination stability
  • 相关文献

参考文献20

  • 1KIM S, CHOI H S, YI K M,et al. Intelligent visual surveillance -a survey [ J]. International Journal of Control, Automation, and Sys-tems, 2010, 8(5): 826-939. 被引量:1
  • 2ARULAMPALAM M,MASKELL S,GORDON N, et al. A tutorial onparticle letters for online nonlinear/ non-Gaussian Bayesian tracking[J]. IEEE Transactions ai Signal Processing, 2002, 50(2): 174-188. 被引量:1
  • 3COMAN1CIU D, RAMESH V, MEER P. Kernel-based object track-ing [J] . IEEE Transaction on Pattern Analysis and Machine Intelli-gence, 2003, 25(5); 564-577. 被引量:1
  • 4NING J F, ZHANG L, ZHANG D, et al Robust mean shift trackingwith corrected background-weighted histogram [ J]. IET ComputerVision, 2010, 6(3): 231 -251. 被引量:1
  • 5BIRCHELD S. Elliptical head tracking using intensity gradients andcolor histograms [ C]// IEEE International Conference on ComputerVision and Pattern Recognition. Santa Barbara, California: IEEE,1998: 232-237. 被引量:1
  • 6WEI D, PIATER J, A probabilistic approach to int呢rating multiple cuesin visual tracking [C]// Proceedings of the 10th European Confonence onCon^juter Vision. Beriin: Springer-Veriag, 2008: 225 -238. 被引量:1
  • 7LI P H,CHAUMETTE F. Image cues fusion for object trackingbased on particle filter [ C]// Proceedings of the Third InternationalWorkshop on Articulated Motion and Deformable Objects. Berlin:Springer-Verlag,2004: 99 - 107. 被引量:1
  • 8WANG X, TANG Z M. Modified particle filter-based infraredpedestrian tracking [ J]. Infrared Physics & Technology, 2010, 53(2):280-287. 被引量:1
  • 9WANG D, LU H C,CHEN Y-W. Object tracking by multi-cuesspatial pyramid matching [ C]// Proceedings of 2010 IEEE 17tK In-ternational Conference on Image Processing. Pitscataway: IEEE,2010: 3957 -3960. 被引量:1
  • 10WELCH G,BISHOP G. An introduction to the Kalman filter, TR95-041[ R]. Chapel Hil], NC, USA: University of North Carolina,Department of Computer Science, 2006. 被引量:1

同被引文献25

  • 1王凯峰,秦前清.基于单类SVM的遥感图像目标检测[J].计算机工程与应用,2005,41(32):63-64. 被引量:7
  • 2张宏志,张金换,岳卉,黄世霖.基于CamShift的目标跟踪算法[J].计算机工程与设计,2006,27(11):2012-2014. 被引量:57
  • 3李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53
  • 4COMANICIUD,RAMESH V,MEERP.Kernel-BasedObjectTracking[J].IEEETransactionsonPatternAnalysisandMachineIntelligence,2003,25(5):564-577. 被引量:1
  • 5AVIDANS.SupportVectorTracking[J].IEEETrans.onPatternAnalysisand MachineIntellience,2004,26(8):1064-1072. 被引量:1
  • 6COMANICIUD.MEERP.MEANShift:ARobustApproachtowardCharacteristicSpaceAnalysis[J].IEEETransonPatternAnalysisandMachineIntelligence.2002,24(5):603-619. 被引量:1
  • 7GRABNER H,BISCHOF H.On-LineBoostingandVision [C].New York:ComputerSocietyConference,2006:260-267. 被引量:1
  • 8GRABNER H,LEISTNERC,BISCHOF H.Semi-SupervisedOn-LineBoostingforRobustTracking [M].Berlin:SpringerBerlinHeidelberg,2008:234-247. 被引量:1
  • 9STALDERS,GRABNER H,VANGOOLL.BeyondSemi-SupervisedTracking:TrackingShouldbeasSimpleasDetection,ButNotSimplerThan Recognition [C].Kyoto:ComputerVision Workshops (ICCV Workshops),2009:1409-1416. 被引量:1
  • 10BABENKOB,YANG M H,BELONGIES.Visualtrackingwithonlinemultipleinstancelearning[C].Miami:ComputerVisionandPatternRecognition,2009:983-990. 被引量:1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部