The four nucleic acid DNA bases(adenine, thymine, guanine, cytosine) and ten cis Watson-Crick/Watson-Crick(cis WC/WC) DNA base pairs were investigated by density functional theory(DFT) quantum chemical calculati...The four nucleic acid DNA bases(adenine, thymine, guanine, cytosine) and ten cis Watson-Crick/Watson-Crick(cis WC/WC) DNA base pairs were investigated by density functional theory(DFT) quantum chemical calculations. Geometry optimizations were carried out on the four bases and ten base pairs at the B3LYP level with 6-31G^(**) basis set. All the optimizations were performed within Cs symmetry. The optimum structures for the four bases and seven cis WC/WC base pairs were obtained, and Natural Bond Orbital analysis(NBO) was based on these structures. The possibilities of matches between any two of the four bases through their Watson-Crick(WC) edges were discussed. The structures of seven cis WC/WC base pairs change to a certain extent relative to these of the four bases due to the formation of hydrogen bonds. These base pairs existing in DNA have an important influence on the structural stability of the double helix. The analysis of the electronic structures and molecular orbitals for seven cis WC/WC base pairs can provide significant information about the relationship between charge transfer along the hydrogen bond and the Frontier orbitals of these base pairs.展开更多
基金Project supported by the National Key Research and Development Project(No.2016YFB0201404)
文摘The four nucleic acid DNA bases(adenine, thymine, guanine, cytosine) and ten cis Watson-Crick/Watson-Crick(cis WC/WC) DNA base pairs were investigated by density functional theory(DFT) quantum chemical calculations. Geometry optimizations were carried out on the four bases and ten base pairs at the B3LYP level with 6-31G^(**) basis set. All the optimizations were performed within Cs symmetry. The optimum structures for the four bases and seven cis WC/WC base pairs were obtained, and Natural Bond Orbital analysis(NBO) was based on these structures. The possibilities of matches between any two of the four bases through their Watson-Crick(WC) edges were discussed. The structures of seven cis WC/WC base pairs change to a certain extent relative to these of the four bases due to the formation of hydrogen bonds. These base pairs existing in DNA have an important influence on the structural stability of the double helix. The analysis of the electronic structures and molecular orbitals for seven cis WC/WC base pairs can provide significant information about the relationship between charge transfer along the hydrogen bond and the Frontier orbitals of these base pairs.