本工作采用(氟磺酰)(三氟甲基磺酰)亚胺锂{Li[(FSO2)(CF3SO2)N],Li FTFSI}和聚氧乙烯(PEO)分别作为导电锂盐和聚合物主链,通过简单的溶液浇铸法制备了新型固态聚合物电解质(SPEs),并采取示差扫描量热(DSC)、热重(TGA)、线性扫描伏安(LSV...本工作采用(氟磺酰)(三氟甲基磺酰)亚胺锂{Li[(FSO2)(CF3SO2)N],Li FTFSI}和聚氧乙烯(PEO)分别作为导电锂盐和聚合物主链,通过简单的溶液浇铸法制备了新型固态聚合物电解质(SPEs),并采取示差扫描量热(DSC)、热重(TGA)、线性扫描伏安(LSV)、交流阻抗(EIS)和恒电位直流(DC)极化等方法研究了Li FTFSI/PEO(EO/Li^+摩尔比为16)电解质的理化性质和电化学性质。结果表明,Li FTFSI/PEO电解质具有较高的室温离子电导率(σ≈10^(-5) S/cm),较高的氧化电位(4.63 V vs.Li/Li^+),并且耐热温度高达256℃。锂硫电池测试结果表明,该类SPEs展现出相对高的首周放电比容量(881 m A·h/g),有效地抑制了多硫离子的"穿梭效应",表现出良好的电池循环性能。展开更多
由于钠具有资源丰富和成本低廉的优势,钠离子电池再次受到科学界和工业界的广泛关注。发展低成本、性能优异的正极材料对于钠离子电池至关重要。本文通过向O3-Na_(0.90)[Cu_(0.22)Fe_(0.30)Mn_(0.48)]O_2材料中引入容易变价的Ni^(2+)得...由于钠具有资源丰富和成本低廉的优势,钠离子电池再次受到科学界和工业界的广泛关注。发展低成本、性能优异的正极材料对于钠离子电池至关重要。本文通过向O3-Na_(0.90)[Cu_(0.22)Fe_(0.30)Mn_(0.48)]O_2材料中引入容易变价的Ni^(2+)得到一种不含Mn^(3+)的钠离子电池新型正极材料O3-NaCu_(1/9)Ni_(2/9)Fe_(1/3)Mn_(1/3)O_2,该材料具有127 m A·h/g可逆比容量和3.1 V平均放电电压。由该正极与硬碳球负极组装成全电池具有248 W·h/kg的理论能量密度,高达93%的能量转化效率和优异的循环性能。展开更多
The high-temperature β-phase NaMnO2 is a promising material for Na-ion batteries(NIBs) due to its high capacity and abundant resources. However, the synthesis of phase-pure -NaMnO2 is burdensome and costineffective...The high-temperature β-phase NaMnO2 is a promising material for Na-ion batteries(NIBs) due to its high capacity and abundant resources. However, the synthesis of phase-pure -NaMnO2 is burdensome and costineffective because it needs to be sintered under oxygen atmosphere at high temperature and followed by a quenching procedure. Here we first report that the pure β phase can be stabilized by Cu-doping and easily synthesized by replacing a proportion of Mn with Cu via a simplified process including sintering in air and cooling to room temperature naturally. Based on the first-principle calculations, the band gap decreases from 0.7 eV to 0.3 eV, which indicates that the electronic conductivity can be improved by Cu-doping. The designed -NaCu(0.1)Mn(0.9)O2 is applied as cathode in NIBs, exhibiting an energy density of 419 Wh/kg and better performance in terms of rate capability and cycling stability than those in the undoped case.展开更多
Yb^3+ and Er^3+ co-doped BaBi4Ti4015 (BBT) ceramic samples showed brighter up-conversion photoluminescence (UC-PL) under excitation of 980 nm. The monotonous increase of fluorescence intensity ratio (FIR) from...Yb^3+ and Er^3+ co-doped BaBi4Ti4015 (BBT) ceramic samples showed brighter up-conversion photoluminescence (UC-PL) under excitation of 980 nm. The monotonous increase of fluorescence intensity ratio (FIR) from 525 to 550 nm with temperature showed that this material could be used for temperature sensing with the maximum sensitivity to be 0.0046 KI and the energy dif- ference was 700 cm-1. Moreover, the sudden change of red and green emissions around 400 ℃might imply a phase transition. With increasing pressure up to 4 GPa, the PL intensity decreased but was still strong enough. These results illustrated the wide applications of BBT in high temperature and high pressure conditions.展开更多
文摘本工作采用(氟磺酰)(三氟甲基磺酰)亚胺锂{Li[(FSO2)(CF3SO2)N],Li FTFSI}和聚氧乙烯(PEO)分别作为导电锂盐和聚合物主链,通过简单的溶液浇铸法制备了新型固态聚合物电解质(SPEs),并采取示差扫描量热(DSC)、热重(TGA)、线性扫描伏安(LSV)、交流阻抗(EIS)和恒电位直流(DC)极化等方法研究了Li FTFSI/PEO(EO/Li^+摩尔比为16)电解质的理化性质和电化学性质。结果表明,Li FTFSI/PEO电解质具有较高的室温离子电导率(σ≈10^(-5) S/cm),较高的氧化电位(4.63 V vs.Li/Li^+),并且耐热温度高达256℃。锂硫电池测试结果表明,该类SPEs展现出相对高的首周放电比容量(881 m A·h/g),有效地抑制了多硫离子的"穿梭效应",表现出良好的电池循环性能。
文摘由于钠具有资源丰富和成本低廉的优势,钠离子电池再次受到科学界和工业界的广泛关注。发展低成本、性能优异的正极材料对于钠离子电池至关重要。本文通过向O3-Na_(0.90)[Cu_(0.22)Fe_(0.30)Mn_(0.48)]O_2材料中引入容易变价的Ni^(2+)得到一种不含Mn^(3+)的钠离子电池新型正极材料O3-NaCu_(1/9)Ni_(2/9)Fe_(1/3)Mn_(1/3)O_2,该材料具有127 m A·h/g可逆比容量和3.1 V平均放电电压。由该正极与硬碳球负极组装成全电池具有248 W·h/kg的理论能量密度,高达93%的能量转化效率和优异的循环性能。
基金Supported by the National Key Technologies R&D Program of China under Grant No 2016YFB0901500the National Nature Science Foundation of China under Grant Nos 51725206 and 51421002
文摘The high-temperature β-phase NaMnO2 is a promising material for Na-ion batteries(NIBs) due to its high capacity and abundant resources. However, the synthesis of phase-pure -NaMnO2 is burdensome and costineffective because it needs to be sintered under oxygen atmosphere at high temperature and followed by a quenching procedure. Here we first report that the pure β phase can be stabilized by Cu-doping and easily synthesized by replacing a proportion of Mn with Cu via a simplified process including sintering in air and cooling to room temperature naturally. Based on the first-principle calculations, the band gap decreases from 0.7 eV to 0.3 eV, which indicates that the electronic conductivity can be improved by Cu-doping. The designed -NaCu(0.1)Mn(0.9)O2 is applied as cathode in NIBs, exhibiting an energy density of 419 Wh/kg and better performance in terms of rate capability and cycling stability than those in the undoped case.
基金Project supported by Fund for Fostering Talents in Basic Science of the National Natural Science Foundation of China(J1103207)the National Natural Science Foundation of China(11274288,21002097)+1 种基金the National Basic Research Program of China(2011CB932801,2012CB933702)Ministry of Education of China(20123402110034)
文摘Yb^3+ and Er^3+ co-doped BaBi4Ti4015 (BBT) ceramic samples showed brighter up-conversion photoluminescence (UC-PL) under excitation of 980 nm. The monotonous increase of fluorescence intensity ratio (FIR) from 525 to 550 nm with temperature showed that this material could be used for temperature sensing with the maximum sensitivity to be 0.0046 KI and the energy dif- ference was 700 cm-1. Moreover, the sudden change of red and green emissions around 400 ℃might imply a phase transition. With increasing pressure up to 4 GPa, the PL intensity decreased but was still strong enough. These results illustrated the wide applications of BBT in high temperature and high pressure conditions.