摘要
Yb^3+ and Er^3+ co-doped BaBi4Ti4015 (BBT) ceramic samples showed brighter up-conversion photoluminescence (UC-PL) under excitation of 980 nm. The monotonous increase of fluorescence intensity ratio (FIR) from 525 to 550 nm with temperature showed that this material could be used for temperature sensing with the maximum sensitivity to be 0.0046 KI and the energy dif- ference was 700 cm-1. Moreover, the sudden change of red and green emissions around 400 ℃might imply a phase transition. With increasing pressure up to 4 GPa, the PL intensity decreased but was still strong enough. These results illustrated the wide applications of BBT in high temperature and high pressure conditions.
Yb^3+ and Er^3+ co-doped BaBi4Ti4015 (BBT) ceramic samples showed brighter up-conversion photoluminescence (UC-PL) under excitation of 980 nm. The monotonous increase of fluorescence intensity ratio (FIR) from 525 to 550 nm with temperature showed that this material could be used for temperature sensing with the maximum sensitivity to be 0.0046 KI and the energy dif- ference was 700 cm-1. Moreover, the sudden change of red and green emissions around 400 ℃might imply a phase transition. With increasing pressure up to 4 GPa, the PL intensity decreased but was still strong enough. These results illustrated the wide applications of BBT in high temperature and high pressure conditions.
基金
Project supported by Fund for Fostering Talents in Basic Science of the National Natural Science Foundation of China(J1103207)
the National Natural Science Foundation of China(11274288,21002097)
the National Basic Research Program of China(2011CB932801,2012CB933702)
Ministry of Education of China(20123402110034)