应用广域照射(wide area illumination,WAI)拉曼光谱技术与簇类独立软模式(soft independent modeling of class analogy,SIMCA)法,结合多元散射校正(multiplicative scatter correction,MSC)和光谱仪降噪和波长标定(spectrometer noise...应用广域照射(wide area illumination,WAI)拉曼光谱技术与簇类独立软模式(soft independent modeling of class analogy,SIMCA)法,结合多元散射校正(multiplicative scatter correction,MSC)和光谱仪降噪和波长标定(spectrometer noise reduction and wavelength calibration,SNRWC)降噪技术,建立鸭、羊、猪3种原料肉及掺假羊肉的定性识别模型。结果表明:经MSC与SNRWC处理后,鸭、羊、猪3种原料肉之间及羊肉、掺假羊肉之间的主成分分析结果具有明显的聚类趋势,在此基础上建立SIMCA定性分类模型,对不同产地的37个原料肉样品种属进行定性鉴别,识别正确率达100%;对4个掺假羊肉和5个未掺假羊肉样品识别正确率也为100%。因此,拉曼光谱分析技术结合有效的数据前处理方法及化学计量学方法可对鸭、羊、猪原料肉种属及掺假羊肉进行鉴别。与常规方法相比,该检测过程快速、方便,并且无需样品前处理。展开更多
文摘应用广域照射(wide area illumination,WAI)拉曼光谱技术与簇类独立软模式(soft independent modeling of class analogy,SIMCA)法,结合多元散射校正(multiplicative scatter correction,MSC)和光谱仪降噪和波长标定(spectrometer noise reduction and wavelength calibration,SNRWC)降噪技术,建立鸭、羊、猪3种原料肉及掺假羊肉的定性识别模型。结果表明:经MSC与SNRWC处理后,鸭、羊、猪3种原料肉之间及羊肉、掺假羊肉之间的主成分分析结果具有明显的聚类趋势,在此基础上建立SIMCA定性分类模型,对不同产地的37个原料肉样品种属进行定性鉴别,识别正确率达100%;对4个掺假羊肉和5个未掺假羊肉样品识别正确率也为100%。因此,拉曼光谱分析技术结合有效的数据前处理方法及化学计量学方法可对鸭、羊、猪原料肉种属及掺假羊肉进行鉴别。与常规方法相比,该检测过程快速、方便,并且无需样品前处理。