Copper accumulation and intracellular distribution in Elsholtzia splendens, a native Chinese Cu-tolerant and accu- mulating plant species, was investigated by transmission electron microscope (TEM) and gradient centri...Copper accumulation and intracellular distribution in Elsholtzia splendens, a native Chinese Cu-tolerant and accu- mulating plant species, was investigated by transmission electron microscope (TEM) and gradient centrifugation techniques. Copper concentrations in roots, stems and leaves of E. splendens increased with increasing Cu levels in solution. After exposure to 500 μmol/L Cu for 8 d, about 1000 mg/kg Cu were accumulated in the stem and 250 mg/kg Cu in the leaf of E. splendens. At 50 μmol/L Cu, no significant toxicity was observed in the chloroplast and mitochondrion within its leaf cells, but separation appeared at the cytoplasm and the cell wall within the root cells. At >250 μmol/L Cu, both root and leaf organelles in E. splendens were damaged heavily by excessive Cu in vivo. Copper subcellular localization in the plant leaf after 8 days’ exposure to 500 μmol/L Cu using gradient centrifugation techniques was found to be decreased in the order: chloroplast>cell wall>soluble fraction>other organelles. The plant root cell wall was found to be the site of highest Cu localization. Increase of Cu exposure time from 8 d to 16 d, increased slightly Cu concentration in cell wall fraction in roots and leaves, while that in the chloroplast fraction decreased in leaves of the plants grown in both 0.25 μmol/L and 500 μmol/L Cu. TEM confirmed that much more Cu localized in cell walls of E. splendens roots and leaves, but also more Cu localized in E. splendens’ chloroplast when the plant is exposed to Cu levels>250 μmol/L, as compared to those in the plant grown in 0.25 μmol/L Cu. Copper treatment at levels>250 μmol/L caused pronounced damage in the leaf chloroplast and root organelles. Copper localization in cell walls and chloroplasts could mainly account for the high detoxification of Cu in E. splendens.展开更多
Free volume theory was applied to the diffusion mechanism of drug through semi crystalline ethylene vinyl acetate (EVA) copolymer. According to free volume theory, drug diffused through semi crystalline EVA via vinyl ...Free volume theory was applied to the diffusion mechanism of drug through semi crystalline ethylene vinyl acetate (EVA) copolymer. According to free volume theory, drug diffused through semi crystalline EVA via vinyl acetate segments of the copolymer, and the dependence of D (D: diffusion coefficient of drug through EVA) on a (a :vinyl acetate content of copolymer; a <0.5) could be described as ln (D)=A1-A2/a(A1, A 2:constant). This was demonstrated by experimental data from several references.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 20307008) and the National Basic Research Program(973) (No. 2002CB410804) of China
文摘Copper accumulation and intracellular distribution in Elsholtzia splendens, a native Chinese Cu-tolerant and accu- mulating plant species, was investigated by transmission electron microscope (TEM) and gradient centrifugation techniques. Copper concentrations in roots, stems and leaves of E. splendens increased with increasing Cu levels in solution. After exposure to 500 μmol/L Cu for 8 d, about 1000 mg/kg Cu were accumulated in the stem and 250 mg/kg Cu in the leaf of E. splendens. At 50 μmol/L Cu, no significant toxicity was observed in the chloroplast and mitochondrion within its leaf cells, but separation appeared at the cytoplasm and the cell wall within the root cells. At >250 μmol/L Cu, both root and leaf organelles in E. splendens were damaged heavily by excessive Cu in vivo. Copper subcellular localization in the plant leaf after 8 days’ exposure to 500 μmol/L Cu using gradient centrifugation techniques was found to be decreased in the order: chloroplast>cell wall>soluble fraction>other organelles. The plant root cell wall was found to be the site of highest Cu localization. Increase of Cu exposure time from 8 d to 16 d, increased slightly Cu concentration in cell wall fraction in roots and leaves, while that in the chloroplast fraction decreased in leaves of the plants grown in both 0.25 μmol/L and 500 μmol/L Cu. TEM confirmed that much more Cu localized in cell walls of E. splendens roots and leaves, but also more Cu localized in E. splendens’ chloroplast when the plant is exposed to Cu levels>250 μmol/L, as compared to those in the plant grown in 0.25 μmol/L Cu. Copper treatment at levels>250 μmol/L caused pronounced damage in the leaf chloroplast and root organelles. Copper localization in cell walls and chloroplasts could mainly account for the high detoxification of Cu in E. splendens.
文摘Free volume theory was applied to the diffusion mechanism of drug through semi crystalline ethylene vinyl acetate (EVA) copolymer. According to free volume theory, drug diffused through semi crystalline EVA via vinyl acetate segments of the copolymer, and the dependence of D (D: diffusion coefficient of drug through EVA) on a (a :vinyl acetate content of copolymer; a <0.5) could be described as ln (D)=A1-A2/a(A1, A 2:constant). This was demonstrated by experimental data from several references.