期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
A^(2)former模型在时间序列预测中的应用研究
1
作者
胡倩伟
王秀青
+2 位作者
安阳
张
诺
飞
王广超
《人工智能科学与工程》
CAS
北大核心
2024年第1期41-50,共10页
时间序列预测在金融、医疗、交通和气象等领域发挥着重要作用。在长时间序列预测中,迫切需要提高预测的精度,解决内存不足等问题。近年来,Transformer模型在自然语言处理领域得以成功应用的同时,在预测研究领域也引起了学者们的广泛关注...
时间序列预测在金融、医疗、交通和气象等领域发挥着重要作用。在长时间序列预测中,迫切需要提高预测的精度,解决内存不足等问题。近年来,Transformer模型在自然语言处理领域得以成功应用的同时,在预测研究领域也引起了学者们的广泛关注,Transformer变体Informer模型的研究在时间序列预测中取得了较大进展。本研究以Informer框架为基础,与加性注意力机制相结合,提出了A^(2)former模型。利用A^(2)former模型在ETT,WTH,ECL和PM2.5数据集上进行了长时间序列预测的实验,实验结果表明所提模型在长时间序列预测中表现出比基线方法(如Informer模型和LSTMa模型)更好的性能。A^(2)former模型不仅将计算时间复杂度降低到线性,而且可以实现更有效的序列建模。本研究的工作为时间序列预测提供了有益参考。
展开更多
关键词
时间序列预测
加性注意力机制
Transformer模型
Informer模型
深度学习
下载PDF
职称材料
题名
A^(2)former模型在时间序列预测中的应用研究
1
作者
胡倩伟
王秀青
安阳
张
诺
飞
王广超
机构
河北师范大学计算机与网络空间安全学院
河北师范大学河北省网络与信息安全重点实验室
河北师范大学河北省供应链大数据分析与数据安全工程研究中心
出处
《人工智能科学与工程》
CAS
北大核心
2024年第1期41-50,共10页
基金
国家自然科学基金项目(61673160)
河北省自然科学基金项目(F2018205102)
河北省高等学校科学技术研究重点项目(ZD2021063)。
文摘
时间序列预测在金融、医疗、交通和气象等领域发挥着重要作用。在长时间序列预测中,迫切需要提高预测的精度,解决内存不足等问题。近年来,Transformer模型在自然语言处理领域得以成功应用的同时,在预测研究领域也引起了学者们的广泛关注,Transformer变体Informer模型的研究在时间序列预测中取得了较大进展。本研究以Informer框架为基础,与加性注意力机制相结合,提出了A^(2)former模型。利用A^(2)former模型在ETT,WTH,ECL和PM2.5数据集上进行了长时间序列预测的实验,实验结果表明所提模型在长时间序列预测中表现出比基线方法(如Informer模型和LSTMa模型)更好的性能。A^(2)former模型不仅将计算时间复杂度降低到线性,而且可以实现更有效的序列建模。本研究的工作为时间序列预测提供了有益参考。
关键词
时间序列预测
加性注意力机制
Transformer模型
Informer模型
深度学习
Keywords
time series forecasting
additive attention mechanism
Transformer model
Informer model
deep learning
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
A^(2)former模型在时间序列预测中的应用研究
胡倩伟
王秀青
安阳
张
诺
飞
王广超
《人工智能科学与工程》
CAS
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部