期刊文献+

A^(2)former模型在时间序列预测中的应用研究

A Study on the Application of A^(2)former Model in Time Series Forecasting
下载PDF
导出
摘要 时间序列预测在金融、医疗、交通和气象等领域发挥着重要作用。在长时间序列预测中,迫切需要提高预测的精度,解决内存不足等问题。近年来,Transformer模型在自然语言处理领域得以成功应用的同时,在预测研究领域也引起了学者们的广泛关注,Transformer变体Informer模型的研究在时间序列预测中取得了较大进展。本研究以Informer框架为基础,与加性注意力机制相结合,提出了A^(2)former模型。利用A^(2)former模型在ETT,WTH,ECL和PM2.5数据集上进行了长时间序列预测的实验,实验结果表明所提模型在长时间序列预测中表现出比基线方法(如Informer模型和LSTMa模型)更好的性能。A^(2)former模型不仅将计算时间复杂度降低到线性,而且可以实现更有效的序列建模。本研究的工作为时间序列预测提供了有益参考。 Time series forecasting plays an important role in the fields of finance,medicine,transportation and meteorology.In long sequence time-series forecasting(LSTF),it is urgent to improve the forecast accuracy and solve the problems of insufficient memory.In recent years,the successful application of Transformer in natural language processing has also attracted a lot of attention forecasting studies.Informer model,a variant of Transformer,has made great progress in time series forecasting.In this paper,we proposed a A^(2)former model,which is based on Informer and additive attention mechanism.The A^(2)former model was experimented on ETT,WTH,ECL and PM2.5 datasets for LSTF.Experimental results show that A^(2)former exhibits better performance than existing baseline methods(e.g.,LSTMa and Informer)in LSTF.A^(2)former not only reduces time computational complexity to linearity and improves forecast accuracy,but also enables more efficient sequence modeling,our work provides a valuable input for time series forecasting.
作者 胡倩伟 王秀青 安阳 张诺飞 王广超 HU Qianwei;WANG Xiuqing;AN Yang;ZHANG Nuofei;WANG Guangchao(College of Computer and Cyber Security,Hebei Normal University,Shijiazhuang 050024,China;Hebei Provincial Key Laboratory of Network&Information Security,Hebei Normal University,Shijiazhuang 050024,China;Hebei Provincial Engineering Research Center for Supply Chain Big Data Analytics&Data Security,Hebei Normal University,Shijiazhuang 050024,China)
出处 《人工智能科学与工程》 CAS 北大核心 2024年第1期41-50,共10页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(61673160) 河北省自然科学基金项目(F2018205102) 河北省高等学校科学技术研究重点项目(ZD2021063)。
关键词 时间序列预测 加性注意力机制 Transformer模型 Informer模型 深度学习 time series forecasting additive attention mechanism Transformer model Informer model deep learning
  • 相关文献

参考文献2

  • 1曹昀炀..基于Transformer的选股因子挖掘[D].华东师范大学,2022:
  • 2王素..基于深度学习的时间序列预测算法研究与应用[D].电子科技大学,2022:

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部