Through introducing the analytical problem of the plate with convection into the solution of the transient heat conduction thermal stress field model of the elastic plate, the stress reduction factor is presented expl...Through introducing the analytical problem of the plate with convection into the solution of the transient heat conduction thermal stress field model of the elastic plate, the stress reduction factor is presented explicitly in its dimensionless form. A new stress reduction factor is introduced for the purpose of comparison. The proper- ties and appropriate conditions of the stress reduction factor, the first and second ther- mal shock resistance (TSR) parameters for the high and low Biot numbers, respectively, and the approximation formulas for the intermediate Blot number-interval are discussed. To investigate the TSR of ceramics more accurately, it is recommended to combine the heat transfer theory with the theory of thermoelasticity or fracture mechanics or use a numerical method. The critical rupture temperature difference and the critical rup- ture dimensionless time can be used to characterize the TSR of ceramics intuitively and legibly.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 90916009 and11172336)
文摘Through introducing the analytical problem of the plate with convection into the solution of the transient heat conduction thermal stress field model of the elastic plate, the stress reduction factor is presented explicitly in its dimensionless form. A new stress reduction factor is introduced for the purpose of comparison. The proper- ties and appropriate conditions of the stress reduction factor, the first and second ther- mal shock resistance (TSR) parameters for the high and low Biot numbers, respectively, and the approximation formulas for the intermediate Blot number-interval are discussed. To investigate the TSR of ceramics more accurately, it is recommended to combine the heat transfer theory with the theory of thermoelasticity or fracture mechanics or use a numerical method. The critical rupture temperature difference and the critical rup- ture dimensionless time can be used to characterize the TSR of ceramics intuitively and legibly.