期刊文献+

应力降低因子和陶瓷材料抗热冲击阻力参数的性质及适用条件 被引量:2

Properties and Appropriate Conditions of Stress Reduction Factor and Thermal Shock Resistance Parameters for Ceramics
下载PDF
导出
摘要 将对流条件下薄板的瞬态导热问题的解析解引入自由弹性薄板的热应力场模型中,给出了相应应力降低因子的具体表达形式.为了便于比较,进一步定义了一个新的应力降低因子.详细讨论了应力降低因子及分别对应于高Biot模数和低Biot模数的第1个和第2个抗热冲击阻力参数及与中间量级的Biot模数相对应的近似表达式的性质及适用条件.将传热学与热弹性力学或断裂力学相结合的方法及有限元方法是该文所推荐的抗热震性能计算方法.研究表明,采用断裂临界温差和断裂临界无量纲时间相结合的方式能够直观简洁地表征陶瓷材料的抗热震性能. Through introducing the analytical solution of the transient heat conduction problem of the plate with convection into the thermal stress field model of the elastic plate, the stress reduction factor was presented explicitly in its dimensionless form. A new stress reduction fac- tor was introduced for the purpose of comparison. The properties and appropriate conditions of the stress reduction factor, the first and second thermal shock resistance (TSR) parameters for the high and low Biot numbers respectively, and the approximation formulas for the intermedi- ate Biot number-interval were discussed. To investigate the TSR of ceramics more accurately, it was recommended to combine the heat transfer theory with the theory of thermoelasticity or fracture mechanics or use a numerical method. The critical rupture temperature difference and the critical rupture dimensionless time can be used to characterize the TSR of ceramics intui- tively and legibly.
出处 《应用数学和力学》 EI CSCD 北大核心 2012年第11期1257-1265,共9页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(90916009 11172336)
关键词 应力降低因子 抗热冲击阻力参数 陶瓷材料 Biot模数 Fourier数 stress reduction factor thermal shock resistance parameter ceramics Biot num-ber Fourier number
  • 相关文献

参考文献2

二级参考文献37

  • 1Nowacki W. Dynamic Problems of Thermodasticity [ M ]. Warszawa: Polish Scientific Publishers, 1975. 被引量:1
  • 2Wang H M, Ding H J, Chen Y M. Thermoelastic dynamic solution of a multilayered spherically isotropic hollow sphere for spherically symmetric problems[J]. Acta Mechanica,2005, 173( 1/4): 131-145. 被引量:1
  • 3Bellman R, Kolaba R E, Lockette J A. Numerical Inversion of the Laplace Transform [M]. New York:American Elsevier Pub Co, 1955. 被引量:1
  • 4Dhaliwal R S,Sing A. Dynamic Coupled Thermoelasticity[M].Delhi:Hindustan Publ, 1980. 被引量:1
  • 5Biot M A. Thermoelasticity and irreversible thermodynamics[ J]. J Appl Phys, 1956,27(3) :240-253.J 被引量:1
  • 6Chadwick P. Thermoelasticity, the Dynamical Theory[M].In:Hill R, Sneddon I N,Eds.Progress in Solid Mechanics. Vol 1.Amsterdam: North Holland, 1960. 被引量:1
  • 7Lord H, Shulman Y.A generalized dynamical theory of thermoelasticity[ J]. Mech Phys Solid, 1967,15 (5) : 299-309. 被引量:1
  • 8Green A E, Lindsay K A. Thermoelasticity[J]. J Elast, 1972,2( 1 ) : 1-7. 被引量:1
  • 9Tzou D Y. Experimental support for the lagging behavior in heat propagation[J]. J Thermophys Heat Transf, 1995,9(4) : 686-693. 被引量:1
  • 10Mitra K, Kumar S, Vedaverg A. Experimental evidence of hyperbolic heat conduction in processed meat[J]. J Heat Transfer, ASME, 1995,117 (3) : 568-573. 被引量:1

共引文献12

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部