针对传统人数统计方案存在侵犯隐私和成本难以控制无法大规模投入使用的问题,提出一种基于Wi-Fi信道状态信息CSI(channel state information)的幅度和相位作为特征的方法进行人数统计,采集3条交叉收发链路上CSI的幅度和相位数据,对数据...针对传统人数统计方案存在侵犯隐私和成本难以控制无法大规模投入使用的问题,提出一种基于Wi-Fi信道状态信息CSI(channel state information)的幅度和相位作为特征的方法进行人数统计,采集3条交叉收发链路上CSI的幅度和相位数据,对数据进行预先平滑和去噪处理,同时使用幅度和相位提高人数统计的准确性和稳定性。在室内环境下进行实验,使用支持向量机(SVM)、神经网络(NN)和卷积神经网络(CNN)进行人数的统计分类并进行结果对比,对比结果表明,3种机器学习算法分别达到了94%、96%和88%的准确率。展开更多
文摘针对传统人数统计方案存在侵犯隐私和成本难以控制无法大规模投入使用的问题,提出一种基于Wi-Fi信道状态信息CSI(channel state information)的幅度和相位作为特征的方法进行人数统计,采集3条交叉收发链路上CSI的幅度和相位数据,对数据进行预先平滑和去噪处理,同时使用幅度和相位提高人数统计的准确性和稳定性。在室内环境下进行实验,使用支持向量机(SVM)、神经网络(NN)和卷积神经网络(CNN)进行人数的统计分类并进行结果对比,对比结果表明,3种机器学习算法分别达到了94%、96%和88%的准确率。