针对复杂道路交通环境,选择YOLO(You Only Look Once)实时目标检测算法,对行人目标进行检测识别的研究。YOLO算法在目标检测的速度和精度上都取得过良好效果。首先在YOLO网络模型的基础上针对行人单类检测问题,修改分类器,并通过卷积操...针对复杂道路交通环境,选择YOLO(You Only Look Once)实时目标检测算法,对行人目标进行检测识别的研究。YOLO算法在目标检测的速度和精度上都取得过良好效果。首先在YOLO网络模型的基础上针对行人单类检测问题,修改分类器,并通过卷积操作改变网络最后的输出维度;其次通过对道路交通场景下采集到的样本图片进行标注,得到行人数据集;然后采用相同预训练模型在YOLOv2和YOLOv3上训练,通过优化网络参数,加速模型收敛。实验结果分析可知,基于改进的YOLOv3的行人目标检测方法更能满足实时性的要求。展开更多
文摘针对复杂道路交通环境,选择YOLO(You Only Look Once)实时目标检测算法,对行人目标进行检测识别的研究。YOLO算法在目标检测的速度和精度上都取得过良好效果。首先在YOLO网络模型的基础上针对行人单类检测问题,修改分类器,并通过卷积操作改变网络最后的输出维度;其次通过对道路交通场景下采集到的样本图片进行标注,得到行人数据集;然后采用相同预训练模型在YOLOv2和YOLOv3上训练,通过优化网络参数,加速模型收敛。实验结果分析可知,基于改进的YOLOv3的行人目标检测方法更能满足实时性的要求。