In this paper, we report on the contrastive analysis of inactivation efficiency of E. coli cells in solution with different disinfection methods. Compared with the hydrogen peroxide solution and the ozone gas, the atm...In this paper, we report on the contrastive analysis of inactivation efficiency of E. coli cells in solution with different disinfection methods. Compared with the hydrogen peroxide solution and the ozone gas, the atmospheric-pressure He plasma can completely kill the E. coli cells in the shortest time. The inactivation efficiency of E. coli cells in solution can be well described by using the chemical reaction rate model. X-ray photoelectron spectroscopy(XPS) analysis shows that the C–O or C=O content of the inactivated E. coli cell surface by plasma is predominantly increased, indicating the quantity of oxygen-containing species in plasma is more than those of two other methods, and then the C–C or C–H bonds can be broken, leading to the etching of organic compounds. Analysis also indicates that plasma-generated species can play a crucial role in the inactivation process by their direct reactions or the decompositions of reactive species, such as ozone into OH radicals in water, then reacting with E. coli cells.展开更多
Recently, we found some errors in Fig. 3 of the article Chin. Phys. B 24 085201 (2015). Upon a thorough examination of the raw data materials, we confirm that the image error did not impact any of the findings and con...Recently, we found some errors in Fig. 3 of the article Chin. Phys. B 24 085201 (2015). Upon a thorough examination of the raw data materials, we confirm that the image error did not impact any of the findings and conclusions of the paper. Based on this, we have made corrections to the original article.展开更多
基金supported by the Natural Science Foundation of Fujian Province,China(Grant No.2014J01025)the National Natural Science Foundation of China(Grant No.11275261)the Funds from the Fujian Provincial Key Laboratory for Plasma and Magnetic Resonance,China
文摘In this paper, we report on the contrastive analysis of inactivation efficiency of E. coli cells in solution with different disinfection methods. Compared with the hydrogen peroxide solution and the ozone gas, the atmospheric-pressure He plasma can completely kill the E. coli cells in the shortest time. The inactivation efficiency of E. coli cells in solution can be well described by using the chemical reaction rate model. X-ray photoelectron spectroscopy(XPS) analysis shows that the C–O or C=O content of the inactivated E. coli cell surface by plasma is predominantly increased, indicating the quantity of oxygen-containing species in plasma is more than those of two other methods, and then the C–C or C–H bonds can be broken, leading to the etching of organic compounds. Analysis also indicates that plasma-generated species can play a crucial role in the inactivation process by their direct reactions or the decompositions of reactive species, such as ozone into OH radicals in water, then reacting with E. coli cells.
文摘Recently, we found some errors in Fig. 3 of the article Chin. Phys. B 24 085201 (2015). Upon a thorough examination of the raw data materials, we confirm that the image error did not impact any of the findings and conclusions of the paper. Based on this, we have made corrections to the original article.