We present the hybrid natural element method(HNEM) for two-dimensional elastoplastic large deformation problems. Sibson interpolation is adopted to construct the shape functions of nodal incremental displacements an...We present the hybrid natural element method(HNEM) for two-dimensional elastoplastic large deformation problems. Sibson interpolation is adopted to construct the shape functions of nodal incremental displacements and incremental stresses. The incremental form of Hellinger–Reissner variational principle for elastoplastic large deformation problems is deduced to obtain the equation system. The total Lagrangian formulation is used to describe the discrete equation system.Compared with the natural element method(NEM), the HNEM has higher computational precision and efficiency in solving elastoplastic large deformation problems. Some numerical examples are selected to demonstrate the advantage of the HNEM for large deformation elastoplasticity problems.展开更多
A hybrid natural element method(HNEM) for two-dimensional viscoelasticity problems under the creep condition is proposed. The natural neighbor interpolation is used as the test function, and the discrete equation sy...A hybrid natural element method(HNEM) for two-dimensional viscoelasticity problems under the creep condition is proposed. The natural neighbor interpolation is used as the test function, and the discrete equation system of the HNEM for viscoelasticity problems is obtained using the Hellinger–Reissner variational principle. In contrast to the natural element method(NEM), the HNEM can directly obtain the nodal stresses, which have higher precisions than those obtained using the moving least-square(MLS) approximation. Some numerical examples are given to demonstrate the validity and superiority of this HNEM.展开更多
基金supported by the Natural Science Foundation of Shanghai,China(Grant No.13ZR1415900)
文摘We present the hybrid natural element method(HNEM) for two-dimensional elastoplastic large deformation problems. Sibson interpolation is adopted to construct the shape functions of nodal incremental displacements and incremental stresses. The incremental form of Hellinger–Reissner variational principle for elastoplastic large deformation problems is deduced to obtain the equation system. The total Lagrangian formulation is used to describe the discrete equation system.Compared with the natural element method(NEM), the HNEM has higher computational precision and efficiency in solving elastoplastic large deformation problems. Some numerical examples are selected to demonstrate the advantage of the HNEM for large deformation elastoplasticity problems.
基金Project supported by the Natural Science Foundation of Shanghai,China(Grant No.13ZR1415900)
文摘A hybrid natural element method(HNEM) for two-dimensional viscoelasticity problems under the creep condition is proposed. The natural neighbor interpolation is used as the test function, and the discrete equation system of the HNEM for viscoelasticity problems is obtained using the Hellinger–Reissner variational principle. In contrast to the natural element method(NEM), the HNEM can directly obtain the nodal stresses, which have higher precisions than those obtained using the moving least-square(MLS) approximation. Some numerical examples are given to demonstrate the validity and superiority of this HNEM.