M50NiL steel was plasma nitrocarburized at 480 °C with and without rare earth (RE) addition. The microstructures of the surface layer were characterized by optical microscopy, X-ray diffraction and scanning ele...M50NiL steel was plasma nitrocarburized at 480 °C with and without rare earth (RE) addition. The microstructures of the surface layer were characterized by optical microscopy, X-ray diffraction and scanning electron microscopy. The mechanical proper-ties and corrosion resistances of the surface layer were studied by Vickers microhardness measurements and polarization tests in 3.5% NaCl solution. The results showed that RE atoms could diffuse into the surface layer of the steel and inhabit the formation ofε-Fe2–3(N,C) phase. As compared to the treatment without RE addition, RE addition further increased the surface hardness by 143 HV0.1, and further increased the thickness of the nitrocarburized layer by 39μm. Compared with the quenched bearing steel, the cor-rosion resistance of the samples nitrocarburized with and without RE addition could be significantly improved. Especially, the sample plasma nitrocarburized with RE addition exhibited the highest corrosion resistance.展开更多
The aim of this investigation is to reveal the influence of rare earths(RE) addition on mechanical properties of plasma nitrocarburized 17-4PH steel.The nitrocarburized layers were characterized by optical microscope,...The aim of this investigation is to reveal the influence of rare earths(RE) addition on mechanical properties of plasma nitrocarburized 17-4PH steel.The nitrocarburized layers were characterized by optical microscope,scanning electron microscope equipped with energy dispersive X-ray analyzer,X-ray diffractometer,microhardness tester and pin-on-disc tribometer.The results showed that RE atoms could diffuse into the surface layer of 17-4PH steel plasma nitrocarburized at 500 °C for 4 h and did not change the ...展开更多
基金supported by the National Natural Science Foundation of China(51371070,51401062)
文摘M50NiL steel was plasma nitrocarburized at 480 °C with and without rare earth (RE) addition. The microstructures of the surface layer were characterized by optical microscopy, X-ray diffraction and scanning electron microscopy. The mechanical proper-ties and corrosion resistances of the surface layer were studied by Vickers microhardness measurements and polarization tests in 3.5% NaCl solution. The results showed that RE atoms could diffuse into the surface layer of the steel and inhabit the formation ofε-Fe2–3(N,C) phase. As compared to the treatment without RE addition, RE addition further increased the surface hardness by 143 HV0.1, and further increased the thickness of the nitrocarburized layer by 39μm. Compared with the quenched bearing steel, the cor-rosion resistance of the samples nitrocarburized with and without RE addition could be significantly improved. Especially, the sample plasma nitrocarburized with RE addition exhibited the highest corrosion resistance.
基金supported by the National Natural Science Foundation of China (50871035)the Ph.D. Programs Foundation of Ministry of Education of China (20060213017)
文摘The aim of this investigation is to reveal the influence of rare earths(RE) addition on mechanical properties of plasma nitrocarburized 17-4PH steel.The nitrocarburized layers were characterized by optical microscope,scanning electron microscope equipped with energy dispersive X-ray analyzer,X-ray diffractometer,microhardness tester and pin-on-disc tribometer.The results showed that RE atoms could diffuse into the surface layer of 17-4PH steel plasma nitrocarburized at 500 °C for 4 h and did not change the ...