报道了以超低温膨胀石墨作为锂离子电池负极材料的研究。采用X射线衍射分析(XRD)、扫描电子显微镜(SEM)以及氮气吸脱附测试(BET)对其物相、表面形貌及结构进行表征;利用恒电流充/放电对其电化学性能进行了测试。结果表明:超低温膨胀石...报道了以超低温膨胀石墨作为锂离子电池负极材料的研究。采用X射线衍射分析(XRD)、扫描电子显微镜(SEM)以及氮气吸脱附测试(BET)对其物相、表面形貌及结构进行表征;利用恒电流充/放电对其电化学性能进行了测试。结果表明:超低温膨胀石墨呈现出蜂窝状多孔结构,比表面积为54 m^2/g。该材料表现出较好的脱/嵌锂容量和良好的循环性能,在100 m A/g的电流密度下,首次可逆比容量达到410 m Ah/g;循环220次后,比容量仍能维持在400 m Ah/g,容量保持率高于95%,是一种具有很好应用前景的储锂负极材料。展开更多
文摘报道了以超低温膨胀石墨作为锂离子电池负极材料的研究。采用X射线衍射分析(XRD)、扫描电子显微镜(SEM)以及氮气吸脱附测试(BET)对其物相、表面形貌及结构进行表征;利用恒电流充/放电对其电化学性能进行了测试。结果表明:超低温膨胀石墨呈现出蜂窝状多孔结构,比表面积为54 m^2/g。该材料表现出较好的脱/嵌锂容量和良好的循环性能,在100 m A/g的电流密度下,首次可逆比容量达到410 m Ah/g;循环220次后,比容量仍能维持在400 m Ah/g,容量保持率高于95%,是一种具有很好应用前景的储锂负极材料。