基于分部求和(Summation By Parts)方法和同时逼近项(Simultaneous Approximation Terms)技术建立的有限差分方法,具有更高的精度和稳定性。同时在介质几何不连续、参数突变条件具有较大的优势。国内对SBP-SAT方法的相关研究目前较少,...基于分部求和(Summation By Parts)方法和同时逼近项(Simultaneous Approximation Terms)技术建立的有限差分方法,具有更高的精度和稳定性。同时在介质几何不连续、参数突变条件具有较大的优势。国内对SBP-SAT方法的相关研究目前较少,论文对该方法的研究背景,方法发展过程进行了介绍并基于SBP-SAT方法和弹性波动理论,结合初边值条件,推导出曲线网格条件下的弹性波动SBP-SAT离散方程。最后,通过数值模拟实现地震波传播过程,介绍该方法在地震数值模拟领域中的应用价值和前景。展开更多
文摘基于分部求和(Summation By Parts)方法和同时逼近项(Simultaneous Approximation Terms)技术建立的有限差分方法,具有更高的精度和稳定性。同时在介质几何不连续、参数突变条件具有较大的优势。国内对SBP-SAT方法的相关研究目前较少,论文对该方法的研究背景,方法发展过程进行了介绍并基于SBP-SAT方法和弹性波动理论,结合初边值条件,推导出曲线网格条件下的弹性波动SBP-SAT离散方程。最后,通过数值模拟实现地震波传播过程,介绍该方法在地震数值模拟领域中的应用价值和前景。