期刊文献+

SBP-SAT方法及其在波动领域的应用 被引量:3

A SBP-SAT method for the numerical solution and its application in the wave motion
下载PDF
导出
摘要 基于分部求和(Summation By Parts)方法和同时逼近项(Simultaneous Approximation Terms)技术建立的有限差分方法,具有更高的精度和稳定性。同时在介质几何不连续、参数突变条件具有较大的优势。国内对SBP-SAT方法的相关研究目前较少,论文对该方法的研究背景,方法发展过程进行了介绍并基于SBP-SAT方法和弹性波动理论,结合初边值条件,推导出曲线网格条件下的弹性波动SBP-SAT离散方程。最后,通过数值模拟实现地震波传播过程,介绍该方法在地震数值模拟领域中的应用价值和前景。 Summation by parts with simultaneous approximation terms has a set of properties that leads to provable time stability and higher order spatial discretization of partial differential equations.The finite difference methods based on this theory can establish a scheme that has incomparable advantages for simulating geometric discontinuity or complex media.At present,there are few researches on SBP-SAT methods in China.Therefore,this paper reviews the history of SBP-SAT methods and their application to the numerical solution of partial differential equations.Then,the discrete equations of elastic wave under the curvilinear coordinates were derived.At last,combining initial value conditions and boundary conditions,a simple simulation for imitating seismic wave propagation was performed.The potential and the application value were present.
作者 杨在林 孙铖 蒋关希曦 杨勇 YANG Zailin;SUN Cheng;JIANG Guanxixi;YANG Yong(College of Aerospace and Civil Engineering,Harbin Engineering University,Harbin 150080,China;Key Laboratory of Advanced Material of Ship and Mechanics,Ministry of Indus-try and Information Technology,Harbin Engineering University,Harbin 150080,China)
出处 《振动与冲击》 EI CSCD 北大核心 2020年第12期150-157,共8页 Journal of Vibration and Shock
基金 国家重点研发计划(2017YFC1500801)。
关键词 SBP算子 有限差分法 边界条件 SAT 高阶方法 能量法 稳定性 summation by parts operators finite difference methods boundary conditions simultaneous approximation terms higher order methods energy method stability
  • 相关文献

参考文献4

二级参考文献15

  • 1裴正林,牟永光.地震波传播数值模拟[J].地球物理学进展,2004,19(4):933-941. 被引量:90
  • 2任济时.高阶Higdon吸收边界条件的直接算法及其评估[J].电子学报,1997,25(5):110-113. 被引量:1
  • 3李信富,李小凡,张美根.地震波数值模拟方法研究综述[J].防灾减灾工程学报,2007,27(2):241-248. 被引量:37
  • 4Aherman Z, Karal F C JR. Propagation of Elastic Waves in Layered Media by Finite Difference Methods[J].Bulletin of the Seismological Society of America, 1968,58( 1 ) : 367-398. 被引量:1
  • 5Akik K, Richards P G. Quantitative Seismology[M]. New York:W H Freeman and Company, 1980. 被引量:1
  • 6Smith W DThe Application of Finite element Analysis to Body Wave Propagation Problem[J]. Geophysics J Roy Astr Soc, 1975,42:747-768. 被引量:1
  • 7Cerveny V, MoIotkov I A, Psencik I.Ray Method in Seismology [ MJ. Praha ~ Univ Karlova1977. 被引量:1
  • 8DUAN Yu-ting, HU Tian-yue, YAO Feng-chang, et al. 3DElastic Wave Equation Forward Modeling Based on the Pre- cise Integration Method[J]. Applied Geophysics, 2013 : 71-78, 118-119. 被引量:1
  • 9Higdon R L. Absorbing Boundary Conditions for Difference Approximations to The Multidimensional Wave Equation[J]. Math Comp, 1986,47(176) ~437-459. 被引量:1
  • 10Higdon R L. Numerical Absorbing Boundary Conditions for the Wave Equationl-J].Math Comp,1987,49(179) :65-90. 被引量:1

共引文献3

同被引文献12

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部