为研究气体离心机取料支臂附近的流动状况,数值模拟了取料支臂附近的流场。采用矢量分裂的有限体积法求解不同出流条件下的N av ier-S tokes方程。采用二阶总变差减小原理,捕捉激波,同时将支臂外部和内部的流动结合起来进行计算。讨论...为研究气体离心机取料支臂附近的流动状况,数值模拟了取料支臂附近的流场。采用矢量分裂的有限体积法求解不同出流条件下的N av ier-S tokes方程。采用二阶总变差减小原理,捕捉激波,同时将支臂外部和内部的流动结合起来进行计算。讨论了激波和气体粘性对流场的影响。得到了不同取料情况下的流场分布图像。结果表明:所采用的计算格式很好地捕捉到了激波和边界层,验证了计算方法的有效性,为数值模拟实际离心机支臂附近的流动状况和支臂损耗的计算打下了基础。展开更多
In a Zippe-type 3-pole gas centrifuge, feed gas is introduced through a sonic nozzle into the rarefied region in the rotor. Introduction of the nonrotating feed gas will slow the whirl flow and introduce a secondary r...In a Zippe-type 3-pole gas centrifuge, feed gas is introduced through a sonic nozzle into the rarefied region in the rotor. Introduction of the nonrotating feed gas will slow the whirl flow and introduce a secondary recirculating flow in the meridian plane. The effects of feed gas on the output of a gas centrifuge are investigated. The non-linear. axisymmetric N-S equations are used to calculate the secondary flow induced by the feed gas. Three types of numerical schemes. an implicit scheme similar to the Beam-Warming scheme. an implicit unfactorized scheme and an improved Newton-Raphson scheme are used. The Cohen separation theory with axial variation is used forcalculating the isotope concentration. Optimization of the output is achieved by automatic variation of the weighting factors for a number of linear flow solutions which can be superimposed. A Rome type centrifuge is analyzed as an example. Results show the recirculating flow caused by the feed gas. especially the acceleration loss. has an important effect on the output of a gas centrifuge.展开更多
To increase the separation efficiency of a gas centrifuge is one of the key objectives for uranium isotope separation. It can provide great benefit with little effort. The separation efficiency is affected by many par...To increase the separation efficiency of a gas centrifuge is one of the key objectives for uranium isotope separation. It can provide great benefit with little effort. The separation efficiency is affected by many parameters.Some physical parameters, such as the pressure of UF, at the wall of the centrifuge cylinder. the position of the wastescoop. the tempwrature profile on the wall of the centrituge cylindwer. the direction of the feed into the gas centrifuge are chosen as variables to optimize the separation efficiency of a gas centrifuge. The optimization is based on analytical and experimental results. Local separation efficiency distribution is a good method to describe the separation phenomena in the gas centrifuge.展开更多
文摘为研究气体离心机取料支臂附近的流动状况,数值模拟了取料支臂附近的流场。采用矢量分裂的有限体积法求解不同出流条件下的N av ier-S tokes方程。采用二阶总变差减小原理,捕捉激波,同时将支臂外部和内部的流动结合起来进行计算。讨论了激波和气体粘性对流场的影响。得到了不同取料情况下的流场分布图像。结果表明:所采用的计算格式很好地捕捉到了激波和边界层,验证了计算方法的有效性,为数值模拟实际离心机支臂附近的流动状况和支臂损耗的计算打下了基础。
文摘In a Zippe-type 3-pole gas centrifuge, feed gas is introduced through a sonic nozzle into the rarefied region in the rotor. Introduction of the nonrotating feed gas will slow the whirl flow and introduce a secondary recirculating flow in the meridian plane. The effects of feed gas on the output of a gas centrifuge are investigated. The non-linear. axisymmetric N-S equations are used to calculate the secondary flow induced by the feed gas. Three types of numerical schemes. an implicit scheme similar to the Beam-Warming scheme. an implicit unfactorized scheme and an improved Newton-Raphson scheme are used. The Cohen separation theory with axial variation is used forcalculating the isotope concentration. Optimization of the output is achieved by automatic variation of the weighting factors for a number of linear flow solutions which can be superimposed. A Rome type centrifuge is analyzed as an example. Results show the recirculating flow caused by the feed gas. especially the acceleration loss. has an important effect on the output of a gas centrifuge.
文摘To increase the separation efficiency of a gas centrifuge is one of the key objectives for uranium isotope separation. It can provide great benefit with little effort. The separation efficiency is affected by many parameters.Some physical parameters, such as the pressure of UF, at the wall of the centrifuge cylinder. the position of the wastescoop. the tempwrature profile on the wall of the centrituge cylindwer. the direction of the feed into the gas centrifuge are chosen as variables to optimize the separation efficiency of a gas centrifuge. The optimization is based on analytical and experimental results. Local separation efficiency distribution is a good method to describe the separation phenomena in the gas centrifuge.