针对永磁同步电机在弱磁过程中容易产生转矩脉动的问题,在弱磁控制的基础上设计了有限集模型预测控制.有限集模型预测(Finite Control Set Model Predictive Torque Control,FCS-MPC)控制算法的实现需要利用整流器有限开关的状态特点,...针对永磁同步电机在弱磁过程中容易产生转矩脉动的问题,在弱磁控制的基础上设计了有限集模型预测控制.有限集模型预测(Finite Control Set Model Predictive Torque Control,FCS-MPC)控制算法的实现需要利用整流器有限开关的状态特点,和电机的数学模型来预测系统的未来状态.同时,构造系统的目标函数,采用遍历法,在线进行寻优选出系统的最优开关状态.最后将目标函数选择的最优开关信号作为控制信号,以使系统稳定性更好.仿真和实验结果表明,所提出的控制策略使永磁同步电机的转矩脉动小、鲁棒性更好。展开更多
文摘针对永磁同步电机在弱磁过程中容易产生转矩脉动的问题,在弱磁控制的基础上设计了有限集模型预测控制.有限集模型预测(Finite Control Set Model Predictive Torque Control,FCS-MPC)控制算法的实现需要利用整流器有限开关的状态特点,和电机的数学模型来预测系统的未来状态.同时,构造系统的目标函数,采用遍历法,在线进行寻优选出系统的最优开关状态.最后将目标函数选择的最优开关信号作为控制信号,以使系统稳定性更好.仿真和实验结果表明,所提出的控制策略使永磁同步电机的转矩脉动小、鲁棒性更好。
文摘永磁同步电机(Permanent Magnet Synchronous Motor,PMSM)弱磁控制系统常用于电动汽车领域。电动汽车运行于低速时,PMSM需要输出大转矩,以响应快速起步、加速及爬坡需求;电动汽车运行于高速,且超过额定速度时,PMSM处于弱磁状态,需具备一定的带载能力,以满足高速行驶和超车工况。针对PMSM弱磁控制中的转速突变,文章设计了自抗扰控制器(Active Disturbances Rejection Controller,ADRC)替代速度外环PI控制器,对扰动项快速观测和补偿,减小速度突变对系统造成干扰,实现转速精准跟踪。针对转矩项干扰,结合转矩和磁链输出值设计有限集模型预测控制(Finite Control Set Model Predictive Control,FCS-MPC)以替代传统直接转矩控制(Direct Torque Control,DTC),构建令转矩和磁链脉动最小的价值函数,再通过价值函数的计算寻优,选取出最优空间矢量控制信号输送给逆变器。基于ADRC和FCS-MPC的优化作用,弱磁控制系统的抗扰能力、电流和转矩输出精度增强,试验验证了所设计系统的可行性和性能优势。