DPA(Differential Power Analysis)攻击的强度取决于芯片电路功耗与所处理的数据之间的相关性以及攻击者对算法电路实现细节的了解程度.本文结合动态差分逻辑和可配置逻辑的特点,提出了一种具有抗DPA攻击能力的双端输出可配置逻辑(DRCL:...DPA(Differential Power Analysis)攻击的强度取决于芯片电路功耗与所处理的数据之间的相关性以及攻击者对算法电路实现细节的了解程度.本文结合动态差分逻辑和可配置逻辑的特点,提出了一种具有抗DPA攻击能力的双端输出可配置逻辑(DRCL:Dual-Rail Configurable Logic).该逻辑一方面具有与数据取值无关的信号翻转率和信号翻转时刻,因而能够实现很好的功耗恒定特性;另一方面去除了电路结构与电路功能之间的相关性,从而可以阻止攻击者通过版图逆向分析的方法窃取算法电路实现细节.实验结果表明,DRCL比典型的抗DPA攻击逻辑WDDL(Wave Dynamic Differential Logic)具有更好的功耗恒定性,因而具有更强的DPA攻击防护性能.展开更多
在密码算法电路中寄存器翻转时刻随机化对芯片抗DPA(differential power analysis)攻击能力有很大影响,因此提出了一种基于寄存器翻转时刻随机化的抗DPA攻击技术,其核心是利用不同频率时钟相位差的变化实现电路中关键寄存器翻转时刻的...在密码算法电路中寄存器翻转时刻随机化对芯片抗DPA(differential power analysis)攻击能力有很大影响,因此提出了一种基于寄存器翻转时刻随机化的抗DPA攻击技术,其核心是利用不同频率时钟相位差的变化实现电路中关键寄存器翻转时刻的随机变化.针对跨时钟域的数据和控制信号,提出了需要满足的时序约束条件的计算方法,同时还分析了不同时钟频率对寄存器翻转时刻随机化程度的影响.以AES密码算法协处理器为例,实现了所提出的寄存器翻转时刻随机化技术,通过实验模拟的方法验证了理论分析的正确性.实验结果显示,在合理选择电路工作时钟频率的情况下,所提出的技术能够有效提高密码算法电路的抗DPA攻击性能.展开更多
文摘在密码算法电路中寄存器翻转时刻随机化对芯片抗DPA(differential power analysis)攻击能力有很大影响,因此提出了一种基于寄存器翻转时刻随机化的抗DPA攻击技术,其核心是利用不同频率时钟相位差的变化实现电路中关键寄存器翻转时刻的随机变化.针对跨时钟域的数据和控制信号,提出了需要满足的时序约束条件的计算方法,同时还分析了不同时钟频率对寄存器翻转时刻随机化程度的影响.以AES密码算法协处理器为例,实现了所提出的寄存器翻转时刻随机化技术,通过实验模拟的方法验证了理论分析的正确性.实验结果显示,在合理选择电路工作时钟频率的情况下,所提出的技术能够有效提高密码算法电路的抗DPA攻击性能.