Background: To study the influence of blood lipid levels on hemorrhagic transformation(HT) and prognosis after acute cerebral infarction(ACI).Methods: Patients with ACI within 72 h of symptoms onset between January 1 ...Background: To study the influence of blood lipid levels on hemorrhagic transformation(HT) and prognosis after acute cerebral infarction(ACI).Methods: Patients with ACI within 72 h of symptoms onset between January 1 st, 2015, and December 31 st, 2016, were retrospectively analyzed. Patients were divided into group A(without HT) and group B(HT). The outcomes were assessed after 3 months of disease onset using the modified Rankin Scale(m RS). An m RS score of 0–2 points indicated excellent prognosis, and an m RS score of 3–6 points indicated poor prognosis.Results: A total of 732 patients conformed to the inclusion criteria, including 628 in group A and 104 in group B. The incidence of HT was 14.2%, and the median onset time was 2 d(interquartile range, 1–7 d). The percentages of patients with large infarct size and cortex involvement in group B were 80.8% and 79.8%, respectively, which were both significantly higher than those in group A(28.7 and 33.4%, respectively). The incidence rate of atrial fibrillation(AF) in group B was significantly higher than that in group A(39.4% vs. 13.9%, P<0.001). The adjusted multivariate analysis results showed that large infarct size, cortex involvement and AF were independent risk factors of HT, while total cholesterol(TC) was a protective factor of HT(OR=0.359, 95% CI 0.136–0.944, P=0.038). With every 1 mmol/L reduction in normal TC levels, the risk of HT increased by 64.1%. The mortality and morbidity at 3 months in group B(21.2% and 76.7%, respectively) were both significantly higher than those in group A(8.0% and 42.8%, respectively). The adjusted multivariate analysis results showed that large infarct size(OR=12.178, 95% CI 5.390–27.516, P<0.001) was an independent risk factor of long-term unfavorable outcomes, whereas low-density lipoprotein cholesterol(LDL-C) was a protective factor(OR=0.538, 95% CI 0.300–0.964, P=0.037). With every 1 mmol/L reduction in normal LDL-C levels, the risk of an unfavorable outcome increased by 46.2%. Major therapies, including int展开更多
Objective To review the recent research progress in lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) including its protein, ligands, expression and pathophysiological significance. Data sources Inform...Objective To review the recent research progress in lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) including its protein, ligands, expression and pathophysiological significance. Data sources Information included in this article was identified by searching of PUBMED (1997-2006) online resources using the key term LOX-1. Study selection Mainly original milestone articles and critical reviews written by major pioneer investigators of the field were selected. Results The key issues related to the LOX-1 protein as well as ligands for LOX-1. Factors regulating the expression of LOX-1 were summarized. The pathophysiological functions of LOX-1 in several diseases were discussed. Conclusions Identification of LOX-1 and a definition of its biological role in pathophysiologic states provide deeper insight into the pathogenesis of some cardiovascular diseases especially in atherosclerosis and provide a potential selective therapeutic approach. LOX-1 is unlocking and drugs targeting LOX-1 might be a promising direction to explore.展开更多
Nonalcoholic fatty liver disease(NAFLD)is a heterogeneous and complex disease that is imprecisely diagnosed by liver biopsy.NAFLD covers a spectrum that ranges from simple steatosis,nonalcoholic steatohepatitis(NASH)w...Nonalcoholic fatty liver disease(NAFLD)is a heterogeneous and complex disease that is imprecisely diagnosed by liver biopsy.NAFLD covers a spectrum that ranges from simple steatosis,nonalcoholic steatohepatitis(NASH)with varying degrees of fibrosis,to cirrhosis,which is a major risk factor for hepatocellular carcinoma.Lifestyle and eating habit changes during the last century have made NAFLD the most common liver disease linked to obesity,type 2 diabetes mellitus and dyslipidemia,with a global prevalence of 25%.NAFLD arises when the uptake of fatty acids(FA)and triglycerides(TG)from circulation and de novo lipogenesis saturate the rate of FAβ-oxidation and verylow density lipoprotein(VLDL)-TG export.Deranged lipid metabolism is also associated with NAFLD progression from steatosis to NASH,and therefore,alterations in liver and serum lipidomic signatures are good indicators of the disease’s development and progression.This review focuses on the importance of the classification of NAFLD patients into different subtypes,corresponding to the main alteration(s)in the major pathways that regulate FA homeostasis leading,in each case,to the initiation and progression of NASH.This concept also supports the targeted intervention as a key approach to maximize therapeutic efficacy and opens the door to the development of precise NASH treatments.展开更多
Background Hyperhomocysteine is an independent risk factor of coronary heart disease (CHD). However, whether hyperhomocys teine affects the progression of atherosclerosis is unclear. In the present study, we examine...Background Hyperhomocysteine is an independent risk factor of coronary heart disease (CHD). However, whether hyperhomocys teine affects the progression of atherosclerosis is unclear. In the present study, we examined the effect of hyperhomocysteine on the forma tion of atherosclerosis in low-density lipoprotein receptor-deficient (LDLr ) mice. Methods Forty-eight 7-week-old LDLr/ mice were assigned to the following groups: mice fed a standard rodent diet (control group), mice fed a high-methionine diet (high-methionine group), mice fed a high-fat diet (high-fat group), and mice fed a diet high in both methionine and fat (high-methionine and high-fat group). At the age of 19, 23, and 27 weeks, four mice at each interval in every group were sacrificed. Results At the end of the study, mice did not show atherosclerotic lesions in the aortic sinus and aortic surface until 27 weeks old in the control group. However, atherosclerotic lesions developed in the other three groups at 19 weeks. The amount of atherosclerotic lesions on the aortic surface was lower in the high-methionine group than in the high-fat group (P 〈 0.001). Atherosclerotic lesions on the aortic surface in the high-methionine and high-fat group were the most severe. The mean area of atherosclerotic lesions in the aortic sinus compared with atherosclerotic lesions on the aortic surface was lower in the high-methionine group than in the high-fat group (P 〈 0.001). Atherosclerotic lesions in the aortic sinus in the high-methionine and high-fat group were the most severe. Conclusions Homocysteinemia accelerates atherosclerotic lesions and induces early atherosclerosis independently in LDLrmice. Reducing the level of homocysteinemia may be beneficial for prevention and treatment of CHD.展开更多
Objective PERK/elF2/CHOP is a major signaling pathway mediating endoplasmic reticulum (ER) stress related with atherosclerosis. Oxidized LDL (ox-LDL) also induces endothelial apoptosis and plays a vital role in th...Objective PERK/elF2/CHOP is a major signaling pathway mediating endoplasmic reticulum (ER) stress related with atherosclerosis. Oxidized LDL (ox-LDL) also induces endothelial apoptosis and plays a vital role in the initiation and progression of atherosclerosis. The present study was conducted to explore the regulatory effect of ox-LDL on PERK/elF2a/CHOP signaling pathway in vascular endothelial cells. Methods The effects of ox-LDL on PERK and p-elF2a protein expression of primary human umbilical vein endothelial cells (HUVECs) were investigated by Western blot analysis. PERK gene silencing and selective elF2a phosphatase inhibitor, salubrinal were used to inhibit the process of ox-LDL induced endothelial cell apoptosis, caspase-3 activity, and CHOP mRNA level. Results Ox-LDL treatment significantly increased the expression of PERK, PERK-mediated inactivation of elF2a phosphorylation, and the expression of CHOP, as well as the caspase-3 activity and apoptosis. The effects of ox-LDL were markedly decreased by knocking down PERK with stable transduction of lentiviral shRNA or by selective elF2a phosphatase inhibitor, salubrinal. Conclusion This study provides the first evidence that ox-LDL induces apoptosis in vascular endothelial cells mediated largely via the PERK/elF2a/CHOP ER-stress pathway. It adds new insights into the molecular mechanisms underlying the pathogenesis and progression of atherosclerosis.展开更多
Atorvastatin decreases inflammation and thrombogenesis in patients with carotid artery plaque. Atorvastatin is administered to lower lipid levels, but its anti-inflammatory and anti-thrombogenic effects remain unclear...Atorvastatin decreases inflammation and thrombogenesis in patients with carotid artery plaque. Atorvastatin is administered to lower lipid levels, but its anti-inflammatory and anti-thrombogenic effects remain unclear. Eighty-nine patients from northeastern China with acute ischemic stroke caused by large-artery atherosclerosis were randomly divided into the study and control groups. All patients received routine treatment, including antiplatelet therapy, circulatory support, and symp- tomatic treatment. The study group (n = 43) also received daily atorvastatin 20 mg/d, and the control group (n = 46) received daily placebo pills containing glucose. After 4 weeks, the levels of C-reactive protein, fibrinogen, and D-dimer were significantly lower in the study group than in the control group. Decreases in the levels of C-reactive protein, fibrinogen, and D-dimer were not associated with de- creases in the levels of triacylglycerol and low-density lipoprotein cholesterol. These results suggest that atorvastatin reduces inflammation and thrombogenesis independent of its lipid-lowering effects in patients with acute ischemic stroke caused by large-artery atherosclerosis.展开更多
Objective To develop a technique for simultaneous detection of various target genes in Roundup Ready soybean by combining multiplex PCR and low-density DNA microarray. Methods Two sets of the multiplex PCR system were...Objective To develop a technique for simultaneous detection of various target genes in Roundup Ready soybean by combining multiplex PCR and low-density DNA microarray. Methods Two sets of the multiplex PCR system were used to amplify the target genes in genetically modified (GM) soybean. Seventeen capture probes (PCR products) and 17 pairs of corresponding primers were designed according to the genetic characteristics of Rroundup Ready soybean (GTS40-3-2), maize (MonS10, Nk603, GA21), canola (T45, MS1/RF1), and rice (SCK) in many identified GM crops. All of the probes were categorized and identified as species-specific probes. One negative probe and one positive control probe were used to assess the efficiency of all reactions, and therefore eliminate any false positive and negative results. After multiplex PCR reaction, amplicons were adulterated with Cy5-dUTP and hybridized with DNA microarray. The array was then scanned to display the specific hybridization signals of target genes. The assay was applied to the analysis of sample of certified transgenic soybean (Roundup Ready GTS40-3-2) and canola (MS1/RF1). Results A combination technique of multiplex PCR and DNA microarray was successfully developed to identify multi-target genes in Roundup Ready soybean and MS 1/RF1 canola with a great specificity and reliability. Reliable identification of genetic characteristics of Roundup Ready of GM soybean from genetically modified crops was achieved at 0.5% transgenic events, indicating a high sensitivity. Conclusion A combination technique of multiplex PCR and low-density DNA microarray can reliably detect and identify the genetically modified crops.展开更多
An efficient and practical post-processing technique based on reverse reconciliation for continuous variable quantum key distribution is proposed and simulated with low-density parity check (LDPC) codes. MultiLevel Co...An efficient and practical post-processing technique based on reverse reconciliation for continuous variable quantum key distribution is proposed and simulated with low-density parity check (LDPC) codes. MultiLevel Coding/ MultiStage Decoding, which fully utilizes optimization technique such as vector quantization and iterative decoding and the optimal channel coding most close to the Shannon limit, was used to realize efficient reverse reconciliation algorithm. Simulation results showed that the proposed method can improve the secure key distribution rate to 2.2 kb/s and the coding efficiency to 0.89 over 20 km in single-mode optical fiber. Moreover, there still is room for much improvement.展开更多
Background:Oxidized low-density lipoprotein (ox-LDL)-induced oxidative stress and endothelial apoptosis are essential for atherosclerosis. Our previous study has shown that ox-LDL-induced apoptosis is mediated by t...Background:Oxidized low-density lipoprotein (ox-LDL)-induced oxidative stress and endothelial apoptosis are essential for atherosclerosis. Our previous study has shown that ox-LDL-induced apoptosis is mediated by the protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic translation initiation factor 2α-subunit (eIF2α)/CCAAT/enhancer-binding protein homologous protein (CHOP) endoplasmic reticulum (ER) stress pathway in endothelial cells. Statins are cholesterol-lowering drugs that exert pleiotropic effects including suppression of oxidative stress. This study aimed to explore the roles of simvastatin on ox-LDL-induced ER stress and apoptosis in endothelial cells.Methods:Human umbilical vein endothelial cells (HUVECs) were treated with simvastatin (0.1, 0.5, or 2.5 μmol/L) or DEVD-CHO (selective inhibitor of caspase-3, 100 μmol/L) for 1 h before the addition of ox-LDL (100 μg/ml) and then incubated for 24 h, and untreated cells were used as a control group. Apoptosis, expression of PERK, phosphorylation of eIF2α, CHOP mRNA level, and caspase-3 activity were measured. Comparisons among multiple groups were performed with one-way analysis of variance (ANOVA) followed by post hoc pairwise comparisons using Tukey’s tests. A value of P 〈 0.05 was considered statistically significant.Results:Exposure of HUVECs to ox-LDL resulted in a significant increase in apoptosis (31.9% vs. 4.9%, P 〈 0.05). Simvastatin (0.1, 0.5, and 2.5 μmol/L) led to a suppression of ox-LDL-induced apoptosis (28.0%, 24.7%, and 13.8%, F = 15.039, all P 〈 0.05, compared with control group). Ox-LDL significantly increased the expression of PERK (499.5%, P 〈 0.05) and phosphorylation of eIF2α (451.6%, P 〈 0.05), if both of which in the control groups were considered as 100%. Simvastatin treatment (0.1, 0.5, and 2.5 μmol/L) blunted ox-LDL-induced expression of PERK (407.8%, 339.1%, and 187.5%, F = 10.121, all P 〈 0.05, compared with control gr展开更多
When implementing helicopter-satellite communications, periodical interruption of the received signal is a challenging problem because the communication antenna is intermittently blocked by the rotating blades of the ...When implementing helicopter-satellite communications, periodical interruption of the received signal is a challenging problem because the communication antenna is intermittently blocked by the rotating blades of the helicopter. The helicopter-satellite channel model and the Forward Error Control(FEC) coding countermeasure are presented in this paper. On the basis of this model, Check-Hybrid(CH) Low-Density Parity-Check(LDPC)codes are designed to mitigate the periodical blockage over the helicopter-satellite channels. The CH-LDPC code is derived by replacing part of single parity-check code constraints in a Quasi-Cyclic LDPC(QC-LDPC) code by using more powerful linear block code constraints. In particular, a method of optimizing the CH-LDPC code ensemble by searching the best matching component code among a variety of linear block codes using extrinsic information transfer charts is proposed. Simulation results show that, the CH-LDPC coding scheme designed for the helicopter-satellite channels in this paper achieves more than 25% bandwidth efficiency improvement, compared with the FEC scheme that uses QC-LDPC codes.展开更多
Plasma cholesterol level is determined by a complex dynamics that involves transport lipoproteins which levels are tightly dependent on how the liver and the intestine regulate cholesterol and biliary acid metabolism....Plasma cholesterol level is determined by a complex dynamics that involves transport lipoproteins which levels are tightly dependent on how the liver and the intestine regulate cholesterol and biliary acid metabolism. Regulation of cholesterol and biliary acids by the liver and the intestine is in turn coupled to a large array of enzymes and transporters that largely influence the inflow and the outflow of cholesterol and biliary acids through these organs. The activity of the key regulators of cholesterol and biliary acids may be influenced by several external factors such as pharmacological drugs and the nutritional status. In recent years, more information has been gathered about the impact of estrogens on regulation of cholesterol in the body. Exposure to high levels of estrogens has been reported to promote cholesterol gallstone formation and women are twice as likely as men to develop cholesterol gallstones. The impact of estrogen withdrawal, such as experienced by menopausal women, is therefore of importance and more information on how the absence of estrogens influence cholesterol regulation is started to come out, especially through the use of animal models. An interesting alternative to metabolic deterioration due to estrogen deficiency is exercise training. The present review is intended to summarize the present information that links key regulators of cholesterol and biliary acid pathways in liver and intestine to the absence of estrogens in an animal model and to discuss the potential role of exercise training as an alternative.展开更多
文摘Background: To study the influence of blood lipid levels on hemorrhagic transformation(HT) and prognosis after acute cerebral infarction(ACI).Methods: Patients with ACI within 72 h of symptoms onset between January 1 st, 2015, and December 31 st, 2016, were retrospectively analyzed. Patients were divided into group A(without HT) and group B(HT). The outcomes were assessed after 3 months of disease onset using the modified Rankin Scale(m RS). An m RS score of 0–2 points indicated excellent prognosis, and an m RS score of 3–6 points indicated poor prognosis.Results: A total of 732 patients conformed to the inclusion criteria, including 628 in group A and 104 in group B. The incidence of HT was 14.2%, and the median onset time was 2 d(interquartile range, 1–7 d). The percentages of patients with large infarct size and cortex involvement in group B were 80.8% and 79.8%, respectively, which were both significantly higher than those in group A(28.7 and 33.4%, respectively). The incidence rate of atrial fibrillation(AF) in group B was significantly higher than that in group A(39.4% vs. 13.9%, P<0.001). The adjusted multivariate analysis results showed that large infarct size, cortex involvement and AF were independent risk factors of HT, while total cholesterol(TC) was a protective factor of HT(OR=0.359, 95% CI 0.136–0.944, P=0.038). With every 1 mmol/L reduction in normal TC levels, the risk of HT increased by 64.1%. The mortality and morbidity at 3 months in group B(21.2% and 76.7%, respectively) were both significantly higher than those in group A(8.0% and 42.8%, respectively). The adjusted multivariate analysis results showed that large infarct size(OR=12.178, 95% CI 5.390–27.516, P<0.001) was an independent risk factor of long-term unfavorable outcomes, whereas low-density lipoprotein cholesterol(LDL-C) was a protective factor(OR=0.538, 95% CI 0.300–0.964, P=0.037). With every 1 mmol/L reduction in normal LDL-C levels, the risk of an unfavorable outcome increased by 46.2%. Major therapies, including int
文摘Objective To review the recent research progress in lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) including its protein, ligands, expression and pathophysiological significance. Data sources Information included in this article was identified by searching of PUBMED (1997-2006) online resources using the key term LOX-1. Study selection Mainly original milestone articles and critical reviews written by major pioneer investigators of the field were selected. Results The key issues related to the LOX-1 protein as well as ligands for LOX-1. Factors regulating the expression of LOX-1 were summarized. The pathophysiological functions of LOX-1 in several diseases were discussed. Conclusions Identification of LOX-1 and a definition of its biological role in pathophysiologic states provide deeper insight into the pathogenesis of some cardiovascular diseases especially in atherosclerosis and provide a potential selective therapeutic approach. LOX-1 is unlocking and drugs targeting LOX-1 might be a promising direction to explore.
文摘Nonalcoholic fatty liver disease(NAFLD)is a heterogeneous and complex disease that is imprecisely diagnosed by liver biopsy.NAFLD covers a spectrum that ranges from simple steatosis,nonalcoholic steatohepatitis(NASH)with varying degrees of fibrosis,to cirrhosis,which is a major risk factor for hepatocellular carcinoma.Lifestyle and eating habit changes during the last century have made NAFLD the most common liver disease linked to obesity,type 2 diabetes mellitus and dyslipidemia,with a global prevalence of 25%.NAFLD arises when the uptake of fatty acids(FA)and triglycerides(TG)from circulation and de novo lipogenesis saturate the rate of FAβ-oxidation and verylow density lipoprotein(VLDL)-TG export.Deranged lipid metabolism is also associated with NAFLD progression from steatosis to NASH,and therefore,alterations in liver and serum lipidomic signatures are good indicators of the disease’s development and progression.This review focuses on the importance of the classification of NAFLD patients into different subtypes,corresponding to the main alteration(s)in the major pathways that regulate FA homeostasis leading,in each case,to the initiation and progression of NASH.This concept also supports the targeted intervention as a key approach to maximize therapeutic efficacy and opens the door to the development of precise NASH treatments.
文摘Background Hyperhomocysteine is an independent risk factor of coronary heart disease (CHD). However, whether hyperhomocys teine affects the progression of atherosclerosis is unclear. In the present study, we examined the effect of hyperhomocysteine on the forma tion of atherosclerosis in low-density lipoprotein receptor-deficient (LDLr ) mice. Methods Forty-eight 7-week-old LDLr/ mice were assigned to the following groups: mice fed a standard rodent diet (control group), mice fed a high-methionine diet (high-methionine group), mice fed a high-fat diet (high-fat group), and mice fed a diet high in both methionine and fat (high-methionine and high-fat group). At the age of 19, 23, and 27 weeks, four mice at each interval in every group were sacrificed. Results At the end of the study, mice did not show atherosclerotic lesions in the aortic sinus and aortic surface until 27 weeks old in the control group. However, atherosclerotic lesions developed in the other three groups at 19 weeks. The amount of atherosclerotic lesions on the aortic surface was lower in the high-methionine group than in the high-fat group (P 〈 0.001). Atherosclerotic lesions on the aortic surface in the high-methionine and high-fat group were the most severe. The mean area of atherosclerotic lesions in the aortic sinus compared with atherosclerotic lesions on the aortic surface was lower in the high-methionine group than in the high-fat group (P 〈 0.001). Atherosclerotic lesions in the aortic sinus in the high-methionine and high-fat group were the most severe. Conclusions Homocysteinemia accelerates atherosclerotic lesions and induces early atherosclerosis independently in LDLrmice. Reducing the level of homocysteinemia may be beneficial for prevention and treatment of CHD.
基金State Key Clinical Specialty Construction Project,China
文摘Objective PERK/elF2/CHOP is a major signaling pathway mediating endoplasmic reticulum (ER) stress related with atherosclerosis. Oxidized LDL (ox-LDL) also induces endothelial apoptosis and plays a vital role in the initiation and progression of atherosclerosis. The present study was conducted to explore the regulatory effect of ox-LDL on PERK/elF2a/CHOP signaling pathway in vascular endothelial cells. Methods The effects of ox-LDL on PERK and p-elF2a protein expression of primary human umbilical vein endothelial cells (HUVECs) were investigated by Western blot analysis. PERK gene silencing and selective elF2a phosphatase inhibitor, salubrinal were used to inhibit the process of ox-LDL induced endothelial cell apoptosis, caspase-3 activity, and CHOP mRNA level. Results Ox-LDL treatment significantly increased the expression of PERK, PERK-mediated inactivation of elF2a phosphorylation, and the expression of CHOP, as well as the caspase-3 activity and apoptosis. The effects of ox-LDL were markedly decreased by knocking down PERK with stable transduction of lentiviral shRNA or by selective elF2a phosphatase inhibitor, salubrinal. Conclusion This study provides the first evidence that ox-LDL induces apoptosis in vascular endothelial cells mediated largely via the PERK/elF2a/CHOP ER-stress pathway. It adds new insights into the molecular mechanisms underlying the pathogenesis and progression of atherosclerosis.
基金supported by the Natural Science Foundation of Liaoning Province in China,No.20092192the National Natural Science Foundation of China,No.81071058
文摘Atorvastatin decreases inflammation and thrombogenesis in patients with carotid artery plaque. Atorvastatin is administered to lower lipid levels, but its anti-inflammatory and anti-thrombogenic effects remain unclear. Eighty-nine patients from northeastern China with acute ischemic stroke caused by large-artery atherosclerosis were randomly divided into the study and control groups. All patients received routine treatment, including antiplatelet therapy, circulatory support, and symp- tomatic treatment. The study group (n = 43) also received daily atorvastatin 20 mg/d, and the control group (n = 46) received daily placebo pills containing glucose. After 4 weeks, the levels of C-reactive protein, fibrinogen, and D-dimer were significantly lower in the study group than in the control group. Decreases in the levels of C-reactive protein, fibrinogen, and D-dimer were not associated with de- creases in the levels of triacylglycerol and low-density lipoprotein cholesterol. These results suggest that atorvastatin reduces inflammation and thrombogenesis independent of its lipid-lowering effects in patients with acute ischemic stroke caused by large-artery atherosclerosis.
基金National Basic Research Program of China (No. 2001CB109001)National High-Tech Research Program of China (No. 2002AA212041)
文摘Objective To develop a technique for simultaneous detection of various target genes in Roundup Ready soybean by combining multiplex PCR and low-density DNA microarray. Methods Two sets of the multiplex PCR system were used to amplify the target genes in genetically modified (GM) soybean. Seventeen capture probes (PCR products) and 17 pairs of corresponding primers were designed according to the genetic characteristics of Rroundup Ready soybean (GTS40-3-2), maize (MonS10, Nk603, GA21), canola (T45, MS1/RF1), and rice (SCK) in many identified GM crops. All of the probes were categorized and identified as species-specific probes. One negative probe and one positive control probe were used to assess the efficiency of all reactions, and therefore eliminate any false positive and negative results. After multiplex PCR reaction, amplicons were adulterated with Cy5-dUTP and hybridized with DNA microarray. The array was then scanned to display the specific hybridization signals of target genes. The assay was applied to the analysis of sample of certified transgenic soybean (Roundup Ready GTS40-3-2) and canola (MS1/RF1). Results A combination technique of multiplex PCR and DNA microarray was successfully developed to identify multi-target genes in Roundup Ready soybean and MS 1/RF1 canola with a great specificity and reliability. Reliable identification of genetic characteristics of Roundup Ready of GM soybean from genetically modified crops was achieved at 0.5% transgenic events, indicating a high sensitivity. Conclusion A combination technique of multiplex PCR and low-density DNA microarray can reliably detect and identify the genetically modified crops.
基金supported by the National Basic Research Program of China(Grant No. 2010CB923202)the National Natural Science Foundation of China (Grant No. 60578043)the Common Construction Program of Beijing Municipal Commission of Education (Grant No. XK100130937)
文摘An efficient and practical post-processing technique based on reverse reconciliation for continuous variable quantum key distribution is proposed and simulated with low-density parity check (LDPC) codes. MultiLevel Coding/ MultiStage Decoding, which fully utilizes optimization technique such as vector quantization and iterative decoding and the optimal channel coding most close to the Shannon limit, was used to realize efficient reverse reconciliation algorithm. Simulation results showed that the proposed method can improve the secure key distribution rate to 2.2 kb/s and the coding efficiency to 0.89 over 20 km in single-mode optical fiber. Moreover, there still is room for much improvement.
文摘Background:Oxidized low-density lipoprotein (ox-LDL)-induced oxidative stress and endothelial apoptosis are essential for atherosclerosis. Our previous study has shown that ox-LDL-induced apoptosis is mediated by the protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic translation initiation factor 2α-subunit (eIF2α)/CCAAT/enhancer-binding protein homologous protein (CHOP) endoplasmic reticulum (ER) stress pathway in endothelial cells. Statins are cholesterol-lowering drugs that exert pleiotropic effects including suppression of oxidative stress. This study aimed to explore the roles of simvastatin on ox-LDL-induced ER stress and apoptosis in endothelial cells.Methods:Human umbilical vein endothelial cells (HUVECs) were treated with simvastatin (0.1, 0.5, or 2.5 μmol/L) or DEVD-CHO (selective inhibitor of caspase-3, 100 μmol/L) for 1 h before the addition of ox-LDL (100 μg/ml) and then incubated for 24 h, and untreated cells were used as a control group. Apoptosis, expression of PERK, phosphorylation of eIF2α, CHOP mRNA level, and caspase-3 activity were measured. Comparisons among multiple groups were performed with one-way analysis of variance (ANOVA) followed by post hoc pairwise comparisons using Tukey’s tests. A value of P 〈 0.05 was considered statistically significant.Results:Exposure of HUVECs to ox-LDL resulted in a significant increase in apoptosis (31.9% vs. 4.9%, P 〈 0.05). Simvastatin (0.1, 0.5, and 2.5 μmol/L) led to a suppression of ox-LDL-induced apoptosis (28.0%, 24.7%, and 13.8%, F = 15.039, all P 〈 0.05, compared with control group). Ox-LDL significantly increased the expression of PERK (499.5%, P 〈 0.05) and phosphorylation of eIF2α (451.6%, P 〈 0.05), if both of which in the control groups were considered as 100%. Simvastatin treatment (0.1, 0.5, and 2.5 μmol/L) blunted ox-LDL-induced expression of PERK (407.8%, 339.1%, and 187.5%, F = 10.121, all P 〈 0.05, compared with control gr
基金supported by the National Natural Science Foundation of China(No.91538203)the new strategic industries development projects of Shenzhen City(No.JCYJ20150403155812833)
文摘When implementing helicopter-satellite communications, periodical interruption of the received signal is a challenging problem because the communication antenna is intermittently blocked by the rotating blades of the helicopter. The helicopter-satellite channel model and the Forward Error Control(FEC) coding countermeasure are presented in this paper. On the basis of this model, Check-Hybrid(CH) Low-Density Parity-Check(LDPC)codes are designed to mitigate the periodical blockage over the helicopter-satellite channels. The CH-LDPC code is derived by replacing part of single parity-check code constraints in a Quasi-Cyclic LDPC(QC-LDPC) code by using more powerful linear block code constraints. In particular, a method of optimizing the CH-LDPC code ensemble by searching the best matching component code among a variety of linear block codes using extrinsic information transfer charts is proposed. Simulation results show that, the CH-LDPC coding scheme designed for the helicopter-satellite channels in this paper achieves more than 25% bandwidth efficiency improvement, compared with the FEC scheme that uses QC-LDPC codes.
基金Supported by The Natural Sciences and Engineering Research Council of Canada,No.NSERC 7594
文摘Plasma cholesterol level is determined by a complex dynamics that involves transport lipoproteins which levels are tightly dependent on how the liver and the intestine regulate cholesterol and biliary acid metabolism. Regulation of cholesterol and biliary acids by the liver and the intestine is in turn coupled to a large array of enzymes and transporters that largely influence the inflow and the outflow of cholesterol and biliary acids through these organs. The activity of the key regulators of cholesterol and biliary acids may be influenced by several external factors such as pharmacological drugs and the nutritional status. In recent years, more information has been gathered about the impact of estrogens on regulation of cholesterol in the body. Exposure to high levels of estrogens has been reported to promote cholesterol gallstone formation and women are twice as likely as men to develop cholesterol gallstones. The impact of estrogen withdrawal, such as experienced by menopausal women, is therefore of importance and more information on how the absence of estrogens influence cholesterol regulation is started to come out, especially through the use of animal models. An interesting alternative to metabolic deterioration due to estrogen deficiency is exercise training. The present review is intended to summarize the present information that links key regulators of cholesterol and biliary acid pathways in liver and intestine to the absence of estrogens in an animal model and to discuss the potential role of exercise training as an alternative.