Thinopyrum ponticum and Th. intermedium provide superior resistance against various diseases in wheat (Ttricum aestivum). Because of their readily crossing with wheat, many genes for disease resistance have been int...Thinopyrum ponticum and Th. intermedium provide superior resistance against various diseases in wheat (Ttricum aestivum). Because of their readily crossing with wheat, many genes for disease resistance have been introduced from the wheatgrasses into wheat. Genes for resistance to leaf rust, stem rust, powdery mildew, Barley yellow dwarf virus, Wheat streak mosaic virus, and its vector, the wheat curl mite, have been transferred into wheat by producing chromosome translocations. These genes offer an opportunity to improve resistance of wheat to the diseases; some of them have been extensively used in protecting wheat from damage of the diseases. Moreover, new resistance to diseases is continuously detected in the progenies of wheat-Thinopyrum derivatives. The present article summaries characterization and application of the genes for fungal and viral disease-resistance derived from Th. ponticum and Th. intermedium.展开更多
The wheat line H960642 is a homozygous wheat-Thinopyrum intermedium translocation line with resistance to BYDV by genomie in situ hybridization (GISH) and RFLP analysis. The genomie DNA of Th. intermedium was used as ...The wheat line H960642 is a homozygous wheat-Thinopyrum intermedium translocation line with resistance to BYDV by genomie in situ hybridization (GISH) and RFLP analysis. The genomie DNA of Th. intermedium was used as a probe, and eonunon wheat genomie DNA as a blocking in GISH experiment. The results showed that the chromosome segments of Th. intermedium were transferred to the distal end of a pair of wheat chromosomes. RFLP analysis indicated that the transloeation line H960642 is a T7DS·7DL-7XL translocation by using 8 probes mapped on the homoeologous group 7 in wheat. The tranalocation breakpoint is located between Xpsr680 and Xpsr965 about 90—99 cM from the centromere. The RFLP markers psr680 and psr687 were closoly linked with the BYDV resistance gene. The gene is located on the distal end of 7XL around Xpsr680 and Xpsr687.展开更多
Barley yellow dwarf virus (BYDV) is one of the most serious wheat diseases in China. So far no resistance has been described in common wheat. A certain level of BYDV resistance was found in thirteen Triticeae species....Barley yellow dwarf virus (BYDV) is one of the most serious wheat diseases in China. So far no resistance has been described in common wheat. A certain level of BYDV resistance was found in thirteen Triticeae species. Thinopyrum intermedium, two octoploids derived from TH. intermedium/wheat, Zhong 4 awnless and TAF46, and one disomic addition line, L1 derived from TAF46, showed good resistance to BYDV by enzyme linked immunosorbent assay (ELISA). Two wheat/TA. intermedium translocation lines, CPI 119880 and CPI 119899, showing good BYDV resistance were developed from L1 by using both CSph mutant and tissue culture. It is found that their BYDV resistance was controlled by a single dominant gene. Two cDNA probes pEleAcc3 and pPJN8 (E1-T1) were screened for detecting Th. intermedium DNA in wheat background. A specific band for the DNA of Th. intermedium and its derivatives was found in Southern hybridization. It is also possible to determine the size of the alien segment by comparing the relative density of the specific band. Therefore, this can be used as a marker to identify the BYDV resistance in wheat breeding program.展开更多
: Wide cross and molecular cytogenetic methods were used to transfer the powdery mildew resistance gene from Thinopyron intermedium(Host) Barkworth & DR Dewey to wheat. Among the progeny of crossing common wheat (...: Wide cross and molecular cytogenetic methods were used to transfer the powdery mildew resistance gene from Thinopyron intermedium(Host) Barkworth & DR Dewey to wheat. Among the progeny of crossing common wheat (Triticum aestivum L.) Yannong 15 with Th. intermedium, a partial amphiploid E990256, with resistance to powdery mildew, was developed. It had 56 chromosomes and could form 28 bivalents in pollen mother cells at metaphase I of meiosis. Resistance verification by race 15 at the seedling stage and by mixed strains of Erysiphales gramnis DC. f. sp. tritici Em. Marchal at the adult stage showed it was immune to powdery mildew at both stages. Gene postulation via 21 isolates of E. gramnis f. sp. tritici and 29 differential hosts showed it was nearly immune to all the isolates used, and its resistance pattern was different from all the mildew resistance genes used, which indicated it probably contained a new resistance gene to powdery mildew. Biochemical verification showed it might convey different Th. intermedium chromosomes from those of the wheat- Th. intermedium partial amphiploids Zhong 1–5. Genomic in situ hybridization analysis by using St genomic DNA as the probe showed E990256 contained a recombination genome of St and E.展开更多
The wheatgrass, Thinopyrum intermedium (Host) Barkworth & DR Dewey, shows many beneficial characteristics, such as big spikes and high resistance to many diseases. To transfer the beneficial genes of this species, ...The wheatgrass, Thinopyrum intermedium (Host) Barkworth & DR Dewey, shows many beneficial characteristics, such as big spikes and high resistance to many diseases. To transfer the beneficial genes of this species, many wheat- Thinopyrum intermedium alien chromosome lines were developed. Of them, Shannong 0095 (SN0095), a disomic substitution, has long spikes and flag-leaves, and thus may be an important genetic resource for wheat yield improvement. In order to realize its heterosis and combining ability on major yield traits, a 7 ×7 complete diallel design was made according to Griffing's Method-1. The results showed that heterosis for spike length (SPL), flag-leaf area (FLA), number of spikes per plant (NSP), number of spikelets per spike (NSL), kernels per spike (KPS), 1 000-kernel weight (TKW) and grain yield per plant (GYP) existed in all the crosses by SN0095, but heterobeltiosis occurred only for KPS, TKW, and GYP. The relative mid-parent heterosis (RMH) and relative high-parent heterosis (RHH) for GYP, which valued as high as 35.32 and 29.92% respectively, were the highest among all the traits mearsured. Though additive and non-additive gene effects and cytoplasmic effects (or cytoplasmic-nuclear interaction effects) were found in governing all the traits measured above, additive gene action played a predominant role. The results also showed that SN0095 was the best-general combiner for SPL and FLA, and high-general combiner for NSP amongst all the parents. Estimates of specific combining ability (SCA) showed that SN0095 could also make high-SCA combinations for GYP, such as SN0095 × Jimai 19 (JMI9). SN0095 could be a unique and important parent in hybrid wheat breeding programs.展开更多
Wheat-related species Th. intermedium was used to cross with common wheat Yannong 15. In the self progenies of the hybrid, two addition lines, II -1-7-1 and II -3-3-2, stable in cytology, were developed by cytology an...Wheat-related species Th. intermedium was used to cross with common wheat Yannong 15. In the self progenies of the hybrid, two addition lines, II -1-7-1 and II -3-3-2, stable in cytology, were developed by cytology and powdery mildew resistance identification. Their chromosome number were 2n = 44 and formed 22 bivalents at PMC MI. In F1 of the two addition lines crossing with Yannong 15, there appeared about one univalent at PMC MI, respectively. Resistance identification in greenhouse and field using the No. 15 and mixed strains of E. gramnis f. sp. tritici showed that they were immune to powdery mildew. Chromosome number and resistance identification using the F2 single plants of the addition line crossing with Yannong 15 indicated that the resistant gene was located on the alien chromosomes. In situ hybridization using St and E genomic DNA as probe showed that the added chromosome in the two addition lines probably came from the E genome of Th. intermedium, which indicated that a pair of E genome展开更多
As a staple food crop for one-third of the world's population, common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) plays an important role in humans' food security. However, the genetic variation of cultivat...As a staple food crop for one-third of the world's population, common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) plays an important role in humans' food security. However, the genetic variation of cultivated wheat has been dramatically narrowed by genetic erosion under the modem cultivation system, resulting in vulnerability to biotic and abiotic stresses (Jiang et al., 1994; Friebe et al., 1996). The wild relatives of wheat represent a large reservoir of superior genes, and transferring these alien genes to modem cultivars through chromosome engineering is a successful method of broadening the genetic diversity of wheat (Chen et al., 2003;展开更多
Alien chromosomes of twelve giant spike wheat germplasm lines were identified by C-banding, genomic in situ hybridization (GISH), sequence characterized amplified region (SCAR), and random amplified polymorphic DNA (R...Alien chromosomes of twelve giant spike wheat germplasm lines were identified by C-banding, genomic in situ hybridization (GISH), sequence characterized amplified region (SCAR), and random amplified polymorphic DNA (RAPD). All lines showed a chromosome number of 2n = 42, five of them carried both a pair of wheat-rye (Triticum aestivum-Secale cereal) 1BL/1RS translocation chromosomes and a pair of Agropyron intermedium (Ai) chromosomes, three carried a pair of Ai chromosomes only, three others carried a pair of 1BL/1RS chromosomes only, and one carried neither 1BL/1BS nor Ai chromosome. Further identification revealed that the identical Ai chromosome in these germplasm lines substituted the chromosome 2D of common wheat (T aestivum L.), designated as 2Ai. The genetic implication and further utilization of 2Ai in wheat improvement were also discussed.展开更多
Wide hybridization is an effective approach for enhancing the resistance of bread wheat (Triticum aestivum L.) to biotic and abiotic stresses by introducing favorable alien genes (Sepsi et al., 2008). Wheatgrass, ...Wide hybridization is an effective approach for enhancing the resistance of bread wheat (Triticum aestivum L.) to biotic and abiotic stresses by introducing favorable alien genes (Sepsi et al., 2008). Wheatgrass, Thinopyrum intermedium (Host) Barkworth & D.R. Dewey or Agropyron intermedium (Host) Beauvoir (2n = 42; genome formula JJjSjSstst), is a perennial species in the tribe Triticeae and an important source of wheat improvement for biotic and abiotic stress resistance and quality-related traits, such as high grain protein concentration (Chen et al., 1998; 2001; 2003; Han et al., 2004; Li and Wang, 2009). In addition, the ready crossing ability of wheatgrass with various Triticum species has made it popular in germ- plasm development.展开更多
The wheat_ Thinopyrum intermedium addition lines Z1,Z2 contain a pair of Th. intermedium chromosomes 2Ai_2 carrying the gene with resistance to barley yellow dwarf virus (BYDV). Genomic in situ hybridizat...The wheat_ Thinopyrum intermedium addition lines Z1,Z2 contain a pair of Th. intermedium chromosomes 2Ai_2 carrying the gene with resistance to barley yellow dwarf virus (BYDV). Genomic in situ hybridization (GISH) was used to analyze the chromosome constitution of Z1,Z2 by using genomic DNA probes from Th. intermedium and Pseudoroegneria strigosa . The results showed that the chromosome constitution of either Z1 or Z2 composes of 42 wheat chromosomes and two Th. intermedium chromosomes (2Ai_2). The 2Ai_2 chromosome is St_E intercalary translocation, in which the E genomic chromosome segment translocated into the middle region of the long arm of chromosome belonging to St genome. With the genomic DNA probe of Ps. strigosa , the GISH pattern specific to the 2Ai_2 chromosome may be used as a molecular cytogenetic marker. A detailed RFLP analysis on Z1, Z2 and their parents was carried out by using 12 probes on the wheat group 2 chromosomes. Twenty RFLP markers specific to the 2Ai_2 chromosome were identified. Two RAPD markers of OPR16 -350 and OPH09 -1580 , specific to the 2Ai_2 chromosome, were identified from 280 RAPD primers. These molecular markers could be used to assisted_select translocation lines with small segment of the 2Ai_2 chromosome and provide tools to localize the BYDV resistance.展开更多
In this study, we isolated an environmental clone of Ochrobactrum intermedium, strain 2745-2, from the formation water of Changqing oilfield in Shanxi, China, which can degrade crude oil. Strain 2745-2 is aerobic and ...In this study, we isolated an environmental clone of Ochrobactrum intermedium, strain 2745-2, from the formation water of Changqing oilfield in Shanxi, China, which can degrade crude oil. Strain 2745-2 is aerobic and rod-shaped with optimum growth at 42 ℃ and pH 5.5. We sequenced the genome and found a single chromosome of 4800175 bp, with a G+C content of 57.63%. Sixty RNAs and 4737 protein-coding genes were identified: many of the genes are responsible for the degradation, emulsification, and metabolizing of crude oil. A comparative genomic analysis with related clinical strains (M86, 229E, and LMG3301T) showed that genes involved in virulence, disease, defense, phages, prophages, transposable elements, plasmids, and antibiotic resistance are also present in strain 2745-2.展开更多
基金supported by the Ministry of Agriculture of China (No. NB08-2130135-(25-30)-21)
文摘Thinopyrum ponticum and Th. intermedium provide superior resistance against various diseases in wheat (Ttricum aestivum). Because of their readily crossing with wheat, many genes for disease resistance have been introduced from the wheatgrasses into wheat. Genes for resistance to leaf rust, stem rust, powdery mildew, Barley yellow dwarf virus, Wheat streak mosaic virus, and its vector, the wheat curl mite, have been transferred into wheat by producing chromosome translocations. These genes offer an opportunity to improve resistance of wheat to the diseases; some of them have been extensively used in protecting wheat from damage of the diseases. Moreover, new resistance to diseases is continuously detected in the progenies of wheat-Thinopyrum derivatives. The present article summaries characterization and application of the genes for fungal and viral disease-resistance derived from Th. ponticum and Th. intermedium.
基金Project supported by the 863 program and the National Natural Science Foundation of China (Grant No. 39680027).
文摘The wheat line H960642 is a homozygous wheat-Thinopyrum intermedium translocation line with resistance to BYDV by genomie in situ hybridization (GISH) and RFLP analysis. The genomie DNA of Th. intermedium was used as a probe, and eonunon wheat genomie DNA as a blocking in GISH experiment. The results showed that the chromosome segments of Th. intermedium were transferred to the distal end of a pair of wheat chromosomes. RFLP analysis indicated that the transloeation line H960642 is a T7DS·7DL-7XL translocation by using 8 probes mapped on the homoeologous group 7 in wheat. The tranalocation breakpoint is located between Xpsr680 and Xpsr965 about 90—99 cM from the centromere. The RFLP markers psr680 and psr687 were closoly linked with the BYDV resistance gene. The gene is located on the distal end of 7XL around Xpsr680 and Xpsr687.
基金This research is supported by the Australian Centre for International Agricultural Research(Projects 8379 and 8813)by the National Science and Technology Committee of China on China's side.
文摘Barley yellow dwarf virus (BYDV) is one of the most serious wheat diseases in China. So far no resistance has been described in common wheat. A certain level of BYDV resistance was found in thirteen Triticeae species. Thinopyrum intermedium, two octoploids derived from TH. intermedium/wheat, Zhong 4 awnless and TAF46, and one disomic addition line, L1 derived from TAF46, showed good resistance to BYDV by enzyme linked immunosorbent assay (ELISA). Two wheat/TA. intermedium translocation lines, CPI 119880 and CPI 119899, showing good BYDV resistance were developed from L1 by using both CSph mutant and tissue culture. It is found that their BYDV resistance was controlled by a single dominant gene. Two cDNA probes pEleAcc3 and pPJN8 (E1-T1) were screened for detecting Th. intermedium DNA in wheat background. A specific band for the DNA of Th. intermedium and its derivatives was found in Southern hybridization. It is also possible to determine the size of the alien segment by comparing the relative density of the specific band. Therefore, this can be used as a marker to identify the BYDV resistance in wheat breeding program.
文摘: Wide cross and molecular cytogenetic methods were used to transfer the powdery mildew resistance gene from Thinopyron intermedium(Host) Barkworth & DR Dewey to wheat. Among the progeny of crossing common wheat (Triticum aestivum L.) Yannong 15 with Th. intermedium, a partial amphiploid E990256, with resistance to powdery mildew, was developed. It had 56 chromosomes and could form 28 bivalents in pollen mother cells at metaphase I of meiosis. Resistance verification by race 15 at the seedling stage and by mixed strains of Erysiphales gramnis DC. f. sp. tritici Em. Marchal at the adult stage showed it was immune to powdery mildew at both stages. Gene postulation via 21 isolates of E. gramnis f. sp. tritici and 29 differential hosts showed it was nearly immune to all the isolates used, and its resistance pattern was different from all the mildew resistance genes used, which indicated it probably contained a new resistance gene to powdery mildew. Biochemical verification showed it might convey different Th. intermedium chromosomes from those of the wheat- Th. intermedium partial amphiploids Zhong 1–5. Genomic in situ hybridization analysis by using St genomic DNA as the probe showed E990256 contained a recombination genome of St and E.
基金supported by the National Natural Science Foundation of China (30571156)
文摘The wheatgrass, Thinopyrum intermedium (Host) Barkworth & DR Dewey, shows many beneficial characteristics, such as big spikes and high resistance to many diseases. To transfer the beneficial genes of this species, many wheat- Thinopyrum intermedium alien chromosome lines were developed. Of them, Shannong 0095 (SN0095), a disomic substitution, has long spikes and flag-leaves, and thus may be an important genetic resource for wheat yield improvement. In order to realize its heterosis and combining ability on major yield traits, a 7 ×7 complete diallel design was made according to Griffing's Method-1. The results showed that heterosis for spike length (SPL), flag-leaf area (FLA), number of spikes per plant (NSP), number of spikelets per spike (NSL), kernels per spike (KPS), 1 000-kernel weight (TKW) and grain yield per plant (GYP) existed in all the crosses by SN0095, but heterobeltiosis occurred only for KPS, TKW, and GYP. The relative mid-parent heterosis (RMH) and relative high-parent heterosis (RHH) for GYP, which valued as high as 35.32 and 29.92% respectively, were the highest among all the traits mearsured. Though additive and non-additive gene effects and cytoplasmic effects (or cytoplasmic-nuclear interaction effects) were found in governing all the traits measured above, additive gene action played a predominant role. The results also showed that SN0095 was the best-general combiner for SPL and FLA, and high-general combiner for NSP amongst all the parents. Estimates of specific combining ability (SCA) showed that SN0095 could also make high-SCA combinations for GYP, such as SN0095 × Jimai 19 (JMI9). SN0095 could be a unique and important parent in hybrid wheat breeding programs.
基金This work was supported by the National Natural Science Foundation of China (Grant No.39970458)。
文摘Wheat-related species Th. intermedium was used to cross with common wheat Yannong 15. In the self progenies of the hybrid, two addition lines, II -1-7-1 and II -3-3-2, stable in cytology, were developed by cytology and powdery mildew resistance identification. Their chromosome number were 2n = 44 and formed 22 bivalents at PMC MI. In F1 of the two addition lines crossing with Yannong 15, there appeared about one univalent at PMC MI, respectively. Resistance identification in greenhouse and field using the No. 15 and mixed strains of E. gramnis f. sp. tritici showed that they were immune to powdery mildew. Chromosome number and resistance identification using the F2 single plants of the addition line crossing with Yannong 15 indicated that the resistant gene was located on the alien chromosomes. In situ hybridization using St and E genomic DNA as probe showed that the added chromosome in the two addition lines probably came from the E genome of Th. intermedium, which indicated that a pair of E genome
基金supported by a grant from the National High Technology Research and Development Program("863" Program) of China(No. 2011AA100103)
文摘As a staple food crop for one-third of the world's population, common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) plays an important role in humans' food security. However, the genetic variation of cultivated wheat has been dramatically narrowed by genetic erosion under the modem cultivation system, resulting in vulnerability to biotic and abiotic stresses (Jiang et al., 1994; Friebe et al., 1996). The wild relatives of wheat represent a large reservoir of superior genes, and transferring these alien genes to modem cultivars through chromosome engineering is a successful method of broadening the genetic diversity of wheat (Chen et al., 2003;
文摘Alien chromosomes of twelve giant spike wheat germplasm lines were identified by C-banding, genomic in situ hybridization (GISH), sequence characterized amplified region (SCAR), and random amplified polymorphic DNA (RAPD). All lines showed a chromosome number of 2n = 42, five of them carried both a pair of wheat-rye (Triticum aestivum-Secale cereal) 1BL/1RS translocation chromosomes and a pair of Agropyron intermedium (Ai) chromosomes, three carried a pair of Ai chromosomes only, three others carried a pair of 1BL/1RS chromosomes only, and one carried neither 1BL/1BS nor Ai chromosome. Further identification revealed that the identical Ai chromosome in these germplasm lines substituted the chromosome 2D of common wheat (T aestivum L.), designated as 2Ai. The genetic implication and further utilization of 2Ai in wheat improvement were also discussed.
基金supported by the Provincial Prize Fund for Distinguished Young and Middle-aged Scientists of Shandong Province(No.BS2011SW053)State Key Laboratory of Plant Cell and Chromosome Engineering(No.PCCE-KF-2014-01)State Key Laboratory of Crop Biology(No.2015KF06)
文摘Wide hybridization is an effective approach for enhancing the resistance of bread wheat (Triticum aestivum L.) to biotic and abiotic stresses by introducing favorable alien genes (Sepsi et al., 2008). Wheatgrass, Thinopyrum intermedium (Host) Barkworth & D.R. Dewey or Agropyron intermedium (Host) Beauvoir (2n = 42; genome formula JJjSjSstst), is a perennial species in the tribe Triticeae and an important source of wheat improvement for biotic and abiotic stress resistance and quality-related traits, such as high grain protein concentration (Chen et al., 1998; 2001; 2003; Han et al., 2004; Li and Wang, 2009). In addition, the ready crossing ability of wheatgrass with various Triticum species has made it popular in germ- plasm development.
文摘The wheat_ Thinopyrum intermedium addition lines Z1,Z2 contain a pair of Th. intermedium chromosomes 2Ai_2 carrying the gene with resistance to barley yellow dwarf virus (BYDV). Genomic in situ hybridization (GISH) was used to analyze the chromosome constitution of Z1,Z2 by using genomic DNA probes from Th. intermedium and Pseudoroegneria strigosa . The results showed that the chromosome constitution of either Z1 or Z2 composes of 42 wheat chromosomes and two Th. intermedium chromosomes (2Ai_2). The 2Ai_2 chromosome is St_E intercalary translocation, in which the E genomic chromosome segment translocated into the middle region of the long arm of chromosome belonging to St genome. With the genomic DNA probe of Ps. strigosa , the GISH pattern specific to the 2Ai_2 chromosome may be used as a molecular cytogenetic marker. A detailed RFLP analysis on Z1, Z2 and their parents was carried out by using 12 probes on the wheat group 2 chromosomes. Twenty RFLP markers specific to the 2Ai_2 chromosome were identified. Two RAPD markers of OPR16 -350 and OPH09 -1580 , specific to the 2Ai_2 chromosome, were identified from 280 RAPD primers. These molecular markers could be used to assisted_select translocation lines with small segment of the 2Ai_2 chromosome and provide tools to localize the BYDV resistance.
基金supported by the National High-Tech R&D Program(863)of China(No.2013AA064402)the National Natural Science Foundation of China(Nos.81301461 and 51474034)+1 种基金the Zhejiang Provincial Natural Science Foundation of China(No.LQ13H190002)the Scientific Research Foundation of Zhejiang Provincial Health Bureau(No.2012KYB083),China
文摘In this study, we isolated an environmental clone of Ochrobactrum intermedium, strain 2745-2, from the formation water of Changqing oilfield in Shanxi, China, which can degrade crude oil. Strain 2745-2 is aerobic and rod-shaped with optimum growth at 42 ℃ and pH 5.5. We sequenced the genome and found a single chromosome of 4800175 bp, with a G+C content of 57.63%. Sixty RNAs and 4737 protein-coding genes were identified: many of the genes are responsible for the degradation, emulsification, and metabolizing of crude oil. A comparative genomic analysis with related clinical strains (M86, 229E, and LMG3301T) showed that genes involved in virulence, disease, defense, phages, prophages, transposable elements, plasmids, and antibiotic resistance are also present in strain 2745-2.