荧光定量PCR(Fluorescence in Quantitative PCR,FQ-PCR)技术是20世纪90年代发展起来的一种新的核酸定量技术,具有高准确性、高特异性等特点,在生物科学和医学研究中发挥着极大的作用。本文综述了荧光定量PCR技术的原理、荧光探针类型...荧光定量PCR(Fluorescence in Quantitative PCR,FQ-PCR)技术是20世纪90年代发展起来的一种新的核酸定量技术,具有高准确性、高特异性等特点,在生物科学和医学研究中发挥着极大的作用。本文综述了荧光定量PCR技术的原理、荧光探针类型及其在植物遗传育种中应用。展开更多
The blood–brain barrier(BBB) and the blood–brain tumor barrier(BBTB) prevent drug and nano-drug delivery systems from entering the brain. However, ligand-mediated nano-drug delivery systems have significantly enhanc...The blood–brain barrier(BBB) and the blood–brain tumor barrier(BBTB) prevent drug and nano-drug delivery systems from entering the brain. However, ligand-mediated nano-drug delivery systems have significantly enhanced the therapeutic treatment of glioma. In this study we investigated the mechanism especially the integrity of liposomes and lipid disks while traversing the BBB and BBTB both in vitro and in vivo. Fluorophores(DiO, DiI and DiD) were loaded into liposomes and lipid disks to form F?rster resonance energy transfer(FRET) nano-drug delivery systems. Using brain capillary endothelial cells as a BBB model, we show that liposomes and disks are present in the cytoplasm as their intact forms and traverse the BBB with a ratio of 0.68‰ and 1.67‰, respectively. Using human umbilical vein endothelial cells as BBTB model, liposomes and disks remained intact and traversed the BBTB with a ratio of 2.31‰and 8.32‰ at 3 h. Ex vivo imaging and immunohistochemical results revealed that liposomes and disks could traverse the BBB and BBTB in vivo as intact forms. In conclusion, these observations explain in part the mechanism by which nano-drug delivery systems increase the therapeutic treatment of glioma.展开更多
缓激肽受体是G蛋白偶联受体家族的重要成员之一,它所介导的信号转导对于维持机体内心血管系统动态平衡和炎症方面发挥了重要的作用。近年来,随着荧光共振能量转移(fluorescence resonance energy transfer,FRET)和生物发光共振能量转移(...缓激肽受体是G蛋白偶联受体家族的重要成员之一,它所介导的信号转导对于维持机体内心血管系统动态平衡和炎症方面发挥了重要的作用。近年来,随着荧光共振能量转移(fluorescence resonance energy transfer,FRET)和生物发光共振能量转移(bioluminescence resonance energy trans-fer,BRET)等技术的相继出现,发现缓激肽受体不仅以单体形式存在,还可能以二聚体甚至是高阶寡聚体的形式参与细胞内的病理生理过程。与单体相比,二聚体(或高阶寡聚体)的信号转导和病理功能都产生了相应变化。本文就缓激肽受体及其二聚体所介导的信号途径、生理病理过程及新的研究技术做一简要综述。展开更多
A variety of technologies continue to develop for high throughput screening This review summarized recent advances of bioassay techniques used in high throughput screening The principles, applications, characteristics...A variety of technologies continue to develop for high throughput screening This review summarized recent advances of bioassay techniques used in high throughput screening The principles, applications, characteristics and other parameters of these methods were described such as homogeneous time resolved fluorescence, fluorescence polarization, fluorescence resonance energy transfer, fluorescence correlation spectroscopy and scintillation proximity展开更多
Near-infrared(NIR) nanoparticles(NPs) based on fluorescence resonance energy transfer(FRET) were prepared by coencapsulation of a red aggregation-induced emission(AIE) molecule, 2-(4-bromophenyl)-3-(4-(4-(diphenylamin...Near-infrared(NIR) nanoparticles(NPs) based on fluorescence resonance energy transfer(FRET) were prepared by coencapsulation of a red aggregation-induced emission(AIE) molecule, 2-(4-bromophenyl)-3-(4-(4-(diphenylamino)styryl)phenyl)fumaronitrile(TB), and a commercial NIR fluorescence dye, silicon 2,3-naphthalocyanine bis(trihexylsilyloxide)(NIR775) with an amphiphilic polymer poly(styrene-co-maleic anhydride)(PSMA). The surface of the NPs, PSMA@TB/NIR775, was modified with poly(ethylene glycol)(PEG) to increase the in vivo biocompatibility of the NPs. The PSMA@TB/NIR775 NPs showed a strong NIR(780 nm) narrow emission and excellent two-photon absorption property. Moreover, the NPs exhibited good monodispersity, stability, and low cytotoxicity.Under the excitation of a 1040 nm femtosecond(fs) laser, the emission peaks at 680 nm of TB and 780 nm of NIR775 excited by FRET were obtained. We utilized PSMA@TB/NIR775 NPs as fluorescent contrast agents for two-photon excited NIR microscopic imaging, and good NIR imaging effect of mouse brain vasculature was obtained with the imaging depth of about 150 μm. The FRET strategy by coencapsulating AIE molecule and NIR dye will be helpful in preparing more narrow emission NIR probes for deep-tissue biological imaging.展开更多
基金supported by China Postdoctoral Science Foundation Grant (No.2017M611464)National Basic Research Program of China (973 Program, No. 2013CB932500)+2 种基金National Natural Science Foundation of China (Nos. 81773657, 81690263 and 81473149)Shanghai Education Commission Major Project (2017-01-07-00-07E00052)Shanghai International Science and Technology Cooperation Project (No. 16430723800)
文摘The blood–brain barrier(BBB) and the blood–brain tumor barrier(BBTB) prevent drug and nano-drug delivery systems from entering the brain. However, ligand-mediated nano-drug delivery systems have significantly enhanced the therapeutic treatment of glioma. In this study we investigated the mechanism especially the integrity of liposomes and lipid disks while traversing the BBB and BBTB both in vitro and in vivo. Fluorophores(DiO, DiI and DiD) were loaded into liposomes and lipid disks to form F?rster resonance energy transfer(FRET) nano-drug delivery systems. Using brain capillary endothelial cells as a BBB model, we show that liposomes and disks are present in the cytoplasm as their intact forms and traverse the BBB with a ratio of 0.68‰ and 1.67‰, respectively. Using human umbilical vein endothelial cells as BBTB model, liposomes and disks remained intact and traversed the BBTB with a ratio of 2.31‰and 8.32‰ at 3 h. Ex vivo imaging and immunohistochemical results revealed that liposomes and disks could traverse the BBB and BBTB in vivo as intact forms. In conclusion, these observations explain in part the mechanism by which nano-drug delivery systems increase the therapeutic treatment of glioma.
文摘缓激肽受体是G蛋白偶联受体家族的重要成员之一,它所介导的信号转导对于维持机体内心血管系统动态平衡和炎症方面发挥了重要的作用。近年来,随着荧光共振能量转移(fluorescence resonance energy transfer,FRET)和生物发光共振能量转移(bioluminescence resonance energy trans-fer,BRET)等技术的相继出现,发现缓激肽受体不仅以单体形式存在,还可能以二聚体甚至是高阶寡聚体的形式参与细胞内的病理生理过程。与单体相比,二聚体(或高阶寡聚体)的信号转导和病理功能都产生了相应变化。本文就缓激肽受体及其二聚体所介导的信号途径、生理病理过程及新的研究技术做一简要综述。
文摘A variety of technologies continue to develop for high throughput screening This review summarized recent advances of bioassay techniques used in high throughput screening The principles, applications, characteristics and other parameters of these methods were described such as homogeneous time resolved fluorescence, fluorescence polarization, fluorescence resonance energy transfer, fluorescence correlation spectroscopy and scintillation proximity
基金financially supported by the National Natural Science Foundation of China (Nos. 21835001, 51773080, 21674041, 51573068, and 21221063)Program for Changbaishan Scholars of Jilin Province, Jilin Province (No. 20160101305JC)the "Talents Cultivation Program" of Jilin University
文摘Near-infrared(NIR) nanoparticles(NPs) based on fluorescence resonance energy transfer(FRET) were prepared by coencapsulation of a red aggregation-induced emission(AIE) molecule, 2-(4-bromophenyl)-3-(4-(4-(diphenylamino)styryl)phenyl)fumaronitrile(TB), and a commercial NIR fluorescence dye, silicon 2,3-naphthalocyanine bis(trihexylsilyloxide)(NIR775) with an amphiphilic polymer poly(styrene-co-maleic anhydride)(PSMA). The surface of the NPs, PSMA@TB/NIR775, was modified with poly(ethylene glycol)(PEG) to increase the in vivo biocompatibility of the NPs. The PSMA@TB/NIR775 NPs showed a strong NIR(780 nm) narrow emission and excellent two-photon absorption property. Moreover, the NPs exhibited good monodispersity, stability, and low cytotoxicity.Under the excitation of a 1040 nm femtosecond(fs) laser, the emission peaks at 680 nm of TB and 780 nm of NIR775 excited by FRET were obtained. We utilized PSMA@TB/NIR775 NPs as fluorescent contrast agents for two-photon excited NIR microscopic imaging, and good NIR imaging effect of mouse brain vasculature was obtained with the imaging depth of about 150 μm. The FRET strategy by coencapsulating AIE molecule and NIR dye will be helpful in preparing more narrow emission NIR probes for deep-tissue biological imaging.