Hippocampal neuronal apoptosis accompanied by impairment of cognitive function occurs in primary diabetic encephalopathy. In this study, we investigated the neuroprotective mechanism of the iridoid glycoside, aucubin,...Hippocampal neuronal apoptosis accompanied by impairment of cognitive function occurs in primary diabetic encephalopathy. In this study, we investigated the neuroprotective mechanism of the iridoid glycoside, aucubin, using rats (n=8). Diabetes mellitus was induced in the rats by intraperitoneal (i.p.) injection of streptozotocin (60 mg/kg body weight). After 65 d, half of the DM rats were administered aucubin (5 mg/kg; i.p.) for 15 d, yielding treatment DM+A. A third group of rats received no strepto- zotocin or aucibin, and served as controls (CON). Encephalopathy was assessed using Y-maze be- havioral testing. Rats were euthanized on Day 87, and hippocampi were excised for visual (light and transmission electron microscopic) and immunochemical (Western blot; immunohistochemical) as- sessments of the CA1 subfield for apoptosis and expression of regulatory proteins Bcl-2 and Bax. Treatment responses to all the parameters examined (body weight, plasma glucose, Y-maze error rates, pyramidal cell ultrastructure, proportions of apoptotic cells, levels of expression of Bcl-2 and Bax, and survivability of neuronal cells) were identical: there were highly significant differences between DM and CON groups (P<0.001), but the effects were significantly moderated (P<0.01) in DM+A compared with DM. These findings confirm the association of apoptosis with the encephalopathic effects of diabetes mellitus, and suggest a major role of the expression levels of Bcl-2 and Bax in the regulation of apop- totic cell death. All of the results suggest that aucubin could effectively inhibit apoptosis by modulating the expressions of Bcl-2 and Bax genes.展开更多
Huanglian Wendan decoction(HLWDD) has been used for the treatment of symptom of "Re", one of major causes in diabetes and metabolic disorders, according to the theory of traditional Chinese medicine. The pre...Huanglian Wendan decoction(HLWDD) has been used for the treatment of symptom of "Re", one of major causes in diabetes and metabolic disorders, according to the theory of traditional Chinese medicine. The present study aimed at investigating the cerebral protective effects of HLWDD on diabetic encephalopathy(DE), one of the major diabetic complications. The effects of HLWDD and metformin were analyzed in the streptozocin(STZ) + high-glucose-fat(HGF) diet-induced DE rats by gastric intubation. In the present study, the effects of HLWDD on cognition deficits were investigated after 30-day intervention at two daily dose levels(3 and 6 g·kg^(-1)). To explore the potential mechanisms underlying the effects of HLWDD, we detected the alterations of neuronal damages, inflammatory cytokines, and impaired insulin signaling pathway in hippocampus of the DE rats. Based on our results from the present study, we concluded that the protective effects of HLWDD against the cognitive deficits and neuronal damages through inhibiting the release of inflammatory cytokines and repairing insulin signaling pathway in hippocampus of the DE rats.展开更多
基金the National Natural Science Foundation of China (Grant No. 30371053)the National Outstanding Youth Foundation of China (Grant No. 30125034)the Scientific and Technological Plan Project of Dalian City (Grant No. 2003B3NS024)
文摘Hippocampal neuronal apoptosis accompanied by impairment of cognitive function occurs in primary diabetic encephalopathy. In this study, we investigated the neuroprotective mechanism of the iridoid glycoside, aucubin, using rats (n=8). Diabetes mellitus was induced in the rats by intraperitoneal (i.p.) injection of streptozotocin (60 mg/kg body weight). After 65 d, half of the DM rats were administered aucubin (5 mg/kg; i.p.) for 15 d, yielding treatment DM+A. A third group of rats received no strepto- zotocin or aucibin, and served as controls (CON). Encephalopathy was assessed using Y-maze be- havioral testing. Rats were euthanized on Day 87, and hippocampi were excised for visual (light and transmission electron microscopic) and immunochemical (Western blot; immunohistochemical) as- sessments of the CA1 subfield for apoptosis and expression of regulatory proteins Bcl-2 and Bax. Treatment responses to all the parameters examined (body weight, plasma glucose, Y-maze error rates, pyramidal cell ultrastructure, proportions of apoptotic cells, levels of expression of Bcl-2 and Bax, and survivability of neuronal cells) were identical: there were highly significant differences between DM and CON groups (P<0.001), but the effects were significantly moderated (P<0.01) in DM+A compared with DM. These findings confirm the association of apoptosis with the encephalopathic effects of diabetes mellitus, and suggest a major role of the expression levels of Bcl-2 and Bax in the regulation of apop- totic cell death. All of the results suggest that aucubin could effectively inhibit apoptosis by modulating the expressions of Bcl-2 and Bax genes.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education(No.20113237120007)the Project supported by Jiangsu Province Traditional Chinese Medicine Administration of Science and Technology(No.LZ13001)the Project supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions(No.12KJD360002)
文摘Huanglian Wendan decoction(HLWDD) has been used for the treatment of symptom of "Re", one of major causes in diabetes and metabolic disorders, according to the theory of traditional Chinese medicine. The present study aimed at investigating the cerebral protective effects of HLWDD on diabetic encephalopathy(DE), one of the major diabetic complications. The effects of HLWDD and metformin were analyzed in the streptozocin(STZ) + high-glucose-fat(HGF) diet-induced DE rats by gastric intubation. In the present study, the effects of HLWDD on cognition deficits were investigated after 30-day intervention at two daily dose levels(3 and 6 g·kg^(-1)). To explore the potential mechanisms underlying the effects of HLWDD, we detected the alterations of neuronal damages, inflammatory cytokines, and impaired insulin signaling pathway in hippocampus of the DE rats. Based on our results from the present study, we concluded that the protective effects of HLWDD against the cognitive deficits and neuronal damages through inhibiting the release of inflammatory cytokines and repairing insulin signaling pathway in hippocampus of the DE rats.