In basic homological algebra, the flat and injective dimensions of modules play an important and fundamental role. In this paper, the closely related IFP-flat and IFP-injective dimensions are introduced and studied. W...In basic homological algebra, the flat and injective dimensions of modules play an important and fundamental role. In this paper, the closely related IFP-flat and IFP-injective dimensions are introduced and studied. We show that IFP-fd(M) = IFP-id(M+) and IFP-fd(M+)=IFP-id(M) for any R-module M over any ring R. Let :Z-In (resp., "Zgv,~) he the class of all left (resp., right) R-modules of IFP-injective (resp., IFP-flat) dimension at most n. We prove that every right R-module has an IFn- preenvelope, (IFn,IF⊥n) is a perfect cotorsion theory over any ring R, and for any ring R with IFP-id(RR) 〈 n, (IIn,II⊥n) is a perfect cotorsion theory. This generalizes and improves the earlier work (J. Algebra 242 (2001), 447-459). Finally, some applications are given.展开更多
Let R be a ring and S a class of R-modules. S-superfluous epimorphisms and S-essential monomorphisms are introduced and studied in this article. As applications, some new characterizations of von Neumann regular rings...Let R be a ring and S a class of R-modules. S-superfluous epimorphisms and S-essential monomorphisms are introduced and studied in this article. As applications, some new characterizations of von Neumann regular rings and perfect rings are given. Finally, these notions are also used to study minimal homomorphisms.展开更多
While the Yoneda embedding and its generalizations have been studied extensively in the literature,the so-called tensor embedding has only received a little attention.In this paper,we study the tensor embedding for cl...While the Yoneda embedding and its generalizations have been studied extensively in the literature,the so-called tensor embedding has only received a little attention.In this paper,we study the tensor embedding for closed symmetric monoidal categories and show how it is connected to the notion of geometrically purity,which has recently been investigated in the works of Enochs et al.(2016)and Estrada et al.(2017).More precisely,for a Grothendieck cosmos,i.e.,a bicomplete Grothendieck category V with a closed symmetric monoidal structure,we prove that the geometrically pure exact category(V,ε■)has enough relative injectives;in fact,every object has a geometrically pure injective envelope.We also show that for some regular cardinalλ,the tensor embedding yields an exact equivalence between(V,ε■)and the category ofλ-cocontinuous V-functors from Presλ(V)to V,where the former is the full V-subcategory ofλ-presentable objects in V.In many cases of interest,λcan be chosen to be■0 and the tensor embedding identifies the geometrically pure injective objects in V with the(categorically)injective objects in the abelian category of V-functors from fp(V)to V.As we explain,the developed theory applies,e.g.,to the category Ch(R)of chain complexes of modules over a commutative ring R and to the category Qcoh(X)of quasi-coherent sheaves over a(suitably nice)scheme X.展开更多
基金supported by National Natural Science Foundation of China(10961021,11001222)
文摘In basic homological algebra, the flat and injective dimensions of modules play an important and fundamental role. In this paper, the closely related IFP-flat and IFP-injective dimensions are introduced and studied. We show that IFP-fd(M) = IFP-id(M+) and IFP-fd(M+)=IFP-id(M) for any R-module M over any ring R. Let :Z-In (resp., "Zgv,~) he the class of all left (resp., right) R-modules of IFP-injective (resp., IFP-flat) dimension at most n. We prove that every right R-module has an IFn- preenvelope, (IFn,IF⊥n) is a perfect cotorsion theory over any ring R, and for any ring R with IFP-id(RR) 〈 n, (IIn,II⊥n) is a perfect cotorsion theory. This generalizes and improves the earlier work (J. Algebra 242 (2001), 447-459). Finally, some applications are given.
基金Supported by Specialized Research Fund for the Doctoral Program of Higher Education (20050284015)National Natural Science Foundation of China (10771096)
文摘Let R be a ring and S a class of R-modules. S-superfluous epimorphisms and S-essential monomorphisms are introduced and studied in this article. As applications, some new characterizations of von Neumann regular rings and perfect rings are given. Finally, these notions are also used to study minimal homomorphisms.
基金supported by CONICYT/FONDECYT/INICIACIOóN(Grant No.11170394)。
文摘While the Yoneda embedding and its generalizations have been studied extensively in the literature,the so-called tensor embedding has only received a little attention.In this paper,we study the tensor embedding for closed symmetric monoidal categories and show how it is connected to the notion of geometrically purity,which has recently been investigated in the works of Enochs et al.(2016)and Estrada et al.(2017).More precisely,for a Grothendieck cosmos,i.e.,a bicomplete Grothendieck category V with a closed symmetric monoidal structure,we prove that the geometrically pure exact category(V,ε■)has enough relative injectives;in fact,every object has a geometrically pure injective envelope.We also show that for some regular cardinalλ,the tensor embedding yields an exact equivalence between(V,ε■)and the category ofλ-cocontinuous V-functors from Presλ(V)to V,where the former is the full V-subcategory ofλ-presentable objects in V.In many cases of interest,λcan be chosen to be■0 and the tensor embedding identifies the geometrically pure injective objects in V with the(categorically)injective objects in the abelian category of V-functors from fp(V)to V.As we explain,the developed theory applies,e.g.,to the category Ch(R)of chain complexes of modules over a commutative ring R and to the category Qcoh(X)of quasi-coherent sheaves over a(suitably nice)scheme X.
基金supported by the National Natural Science Foundation of China(10871042,10971024)the Specialized Research Fund for the Doctoral Program of Higher Education(200802860024)