以10种木材纹理样本为对象,研究了木材纹理参数体系的建立方法,并进行了分类识别的仿真实验。首先,针对木材纹理特点并结合类别可分性判据,构造了适于描述木材的空间灰度共生矩阵,并在此基础上提取了木材的11个纹理特征参数。其次,借助...以10种木材纹理样本为对象,研究了木材纹理参数体系的建立方法,并进行了分类识别的仿真实验。首先,针对木材纹理特点并结合类别可分性判据,构造了适于描述木材的空间灰度共生矩阵,并在此基础上提取了木材的11个纹理特征参数。其次,借助相关性分析对参数进行了特征选择,进而建立了能直接与人的感官对应的木材纹理参数体系。最后,利用 BP 神经网络分类器对木材样本进行了分类识别研究,识别率为87.50%,验证了参数体系的有效性,表明用本文提出的纹理参数体系对木材进行分类识别是可行的。展开更多
This paper mainly studies the disease of cucumber downy mildew, powdery mildew and anthracnose leaf image processing and recognition technologies. Application of median filtering method of filtering noise, leaf spot d...This paper mainly studies the disease of cucumber downy mildew, powdery mildew and anthracnose leaf image processing and recognition technologies. Application of median filtering method of filtering noise, leaf spot disease of cucumber leaf color range segmentation part extract color feature parameters of the lesion site, characteristic parameters of the shape;extraction texture parameters by using gray level co-occurrence matrix. Based on the shortest distance methods to identify diseases of images. The experimental result showed that the current method on disease recognition accuracy rates more than 96%.展开更多
基金黑龙江省自然科学基金项目((C2004-03C0308)哈尔滨市自然科学基金项日(2004AFX X J 0 20)
文摘以10种木材纹理样本为对象,研究了木材纹理参数体系的建立方法,并进行了分类识别的仿真实验。首先,针对木材纹理特点并结合类别可分性判据,构造了适于描述木材的空间灰度共生矩阵,并在此基础上提取了木材的11个纹理特征参数。其次,借助相关性分析对参数进行了特征选择,进而建立了能直接与人的感官对应的木材纹理参数体系。最后,利用 BP 神经网络分类器对木材样本进行了分类识别研究,识别率为87.50%,验证了参数体系的有效性,表明用本文提出的纹理参数体系对木材进行分类识别是可行的。
文摘This paper mainly studies the disease of cucumber downy mildew, powdery mildew and anthracnose leaf image processing and recognition technologies. Application of median filtering method of filtering noise, leaf spot disease of cucumber leaf color range segmentation part extract color feature parameters of the lesion site, characteristic parameters of the shape;extraction texture parameters by using gray level co-occurrence matrix. Based on the shortest distance methods to identify diseases of images. The experimental result showed that the current method on disease recognition accuracy rates more than 96%.