期刊文献+

LBP和GLCM融合的织物组织结构分类 被引量:11

Fabric structure classification based on LBP and GLCM fusion
下载PDF
导出
摘要 为实现织物组织结构的自动分类,提出一种基于局部二进制模式(LBP)与灰度共生矩阵(GLCM)相结合的织物组织分类算法。首先,采用中值滤波、双峰高斯函数规定化等算法对织物图像进行预处理,滤除图像噪声并提高对比度。进而用局部二进制模式和灰度共生矩阵两种方法获取图像的局部及全局纹理特征信息。最后,利用基于Levenberg-Marquardt(L-M)算法的BP神经网络分类器对特征向量进行训练和测试,实现对3种基本组织(平纹、斜纹和缎纹组织)的自动分类。实验结果表明,基于L-M算法的BP神经网络具有较快的训练速度能够对织物组织结构进行准确有效的分类。此外,与灰度共生矩阵和局部二进制模式方法进行对比,两者融合的特征信息能得到最好的分类结果(99.33%)。 To realize automatic classification of fabric structure, a fabric structure classification algorithm based on local binary pattern (LBP) and gray level co-occurrence matrix (GLCM) is proposed. Firstly, fabric image is pre- processed by median filter and bimodal Gaussian function specification algorithm in order to filter noise and improve contrast. Then, the two approaches which are local binary pattern and gray level co-occurrence matrix are applied to extract the local and global texture features of fabric image. Finally, an appropriate BP neural network classifier based on Levenberg-Marquardt (L-M) algorithm is used to training and testing the feature vector in order to achieve the automatic classification of three basic woven fabrics (plain, twill and satin weave). The experimental results indicate that BP neural network classifier based on L-M algorithm with faster training speed can classify woven fab- rics accurately and efficiently. Besides, compared with GLCM method and LBP method, the fusion of the two fea- ture vectors obtains the best classification result (99.33 % ).
出处 《电子测量与仪器学报》 CSCD 北大核心 2015年第9期1406-1413,共8页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金(61301276) 西安工程大学学科建设经费资助基金(107090811) 西安工程大学青年学术骨干支持计划资助项目
关键词 织物组织 灰度共生矩阵 局部二进制模式 神经网络 fabric structure GLCM local binary patterns neural network
  • 相关文献

参考文献20

  • 1LACHKAR A, BENSLIMANE R, DORAZIO L, et al. Textile woven fabric recognition using Fourier image analysis techniques: Part II-texture analysis for crossed- states detection [ J ]. Journal of the Textile Institute, 2005, 96(3) : 179-183. 被引量:1
  • 2AJALLOUIAN F, TAVANAI H, PALHANG M, et al. A novel method for the identification of weave repeat through image processing[ J]. The Journal of the Textile Institute, 2009, 100(3) : 195-206. 被引量:1
  • 3TUN/K M, LINKA A, VOLF P. Automatic assessing and monitoring of weaving density[ J]. Fibers and Poly- mers, 2009, 10(6): 830-836. 被引量:1
  • 4JEONG Y J, JANG J. Applying image analysis to auto- matic inspection of fabric density for woven fabrics [ J ]. Fibers and Polymers, 2005, 6(2) : 156-161. 被引量:1
  • 5沈建强,耿兆丰,邹轩,潘咏斌.一种基于小波变换的织物组织与结构参数检测方法[J].仪器仪表学报,2007,28(2):357-362. 被引量:5
  • 6孙亚峰,陈霞,王新厚.机织物密度的计算机自动识别[J].东华大学学报(自然科学版),2006,32(2):83-88. 被引量:14
  • 7WANG X, GEORGANAS N D, PETRIU E M. Fabric texture analysis using computer vision techniques [ J ]. IEEE Transactions on Instrumentation and Measure- ment, 2011, 60(1) : 44-56. 被引量:1
  • 8KUO C F J, SHIH C Y, HO C E, et al. Application of computer vision in the automatic identification and clas- sification of woven fabric weave patterns [ J ]. Textile Research Journal, 2010, 80(20) : 2144-2157. 被引量:1
  • 9张一,耿兆丰.基于基元特征匹配的织物结构分析与识别[J].微计算机信息,2006,22(01S):269-271. 被引量:3
  • 10JING J, XU M, LI P, et al. Automatic classification of woven fabric structure based on texture feature and PNN [J]. Fibers and Polymers, 2014, 15(5) : 1092-1098. 被引量:1

二级参考文献64

共引文献89

同被引文献114

引证文献11

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部