摘要
Public transportation by bus is an essential part of mobility. Braking and starting, e.g., approaching a bus stop, are documented as the main reason for non-collision incidents. These situations are evoked by the acceleration forces leading to perturbations of the passenger’s base of support. In laboratory studies perturbations are applied to getting insight into the postural control system and neuromuscular responses. However, bus perturbations diverge from laboratory ones with respect to duration, maximum and shape, and it was shown recently that these characteristics influence the postural response. Thus, results from posturographic studies cannot be generalised and transferred to bus perturbations. In this study, acceleration (ACC) and deceleration (DEC) signals of real traffic situations were examined. A mathematical approach is proposed in order to identify characteristics of these signals and to quantify their similarity and complexity. Typical characteristics (duration, maximum, and shape) of real-world driving manoeuvres concerning start and stop situations could be identified. A mean duration of 13.6 s for ACC and 9.8 s for DEC signals was found which is clearly longer than laboratory perturbations. ACC and DEC signals are more complex than the used signals for platform displacements in the laboratory. The proposed method enables the reconstruction of bus ACC and DEC signals. The data can be used as input for studies on postural control with high ecological validity.
Public transportation by bus is an essential part of mobility. Braking and starting, e.g., approaching a bus stop, are documented as the main reason for non-collision incidents. These situations are evoked by the acceleration forces leading to perturbations of the passenger’s base of support. In laboratory studies perturbations are applied to getting insight into the postural control system and neuromuscular responses. However, bus perturbations diverge from laboratory ones with respect to duration, maximum and shape, and it was shown recently that these characteristics influence the postural response. Thus, results from posturographic studies cannot be generalised and transferred to bus perturbations. In this study, acceleration (ACC) and deceleration (DEC) signals of real traffic situations were examined. A mathematical approach is proposed in order to identify characteristics of these signals and to quantify their similarity and complexity. Typical characteristics (duration, maximum, and shape) of real-world driving manoeuvres concerning start and stop situations could be identified. A mean duration of 13.6 s for ACC and 9.8 s for DEC signals was found which is clearly longer than laboratory perturbations. ACC and DEC signals are more complex than the used signals for platform displacements in the laboratory. The proposed method enables the reconstruction of bus ACC and DEC signals. The data can be used as input for studies on postural control with high ecological validity.