期刊文献+

A New Bi-Frequency Soil Smart Sensing Moisture and Salinity for Connected Sustainable Agriculture

A New Bi-Frequency Soil Smart Sensing Moisture and Salinity for Connected Sustainable Agriculture
下载PDF
导出
摘要 Optimizing water consumption is a major challenge for more sustainable agriculture with respect for the environment. By combining micro and nanotechnologies with the offered solutions of IoT connection (Sigfox and LoRa), new sensors allow the farmer to be connected to his agricultural production by mastering in real time the right contribution needed in water and fertilizer. The sensor designed in this research allows a double measurement of soil moisture and salinity. In order to minimize the destructuring of the ground to insert the sensor, we have designed a cylindrical sensor, easy to insert, with its electronics inside its body to propose a low power electronic architecture capable of measuring and communicating wireless with a LoRa or Sigfox network or even the farmer’s cell phone. This new smart sensor is then compared to the current leaders in agriculture to validate its performance. Finally, the sensor has better performance than commercials, a better response time, a better precision and it will be cheaper. For the salinity measure, it can detect the level of fertilizer in the soil according to the need of farmers. Optimizing water consumption is a major challenge for more sustainable agriculture with respect for the environment. By combining micro and nanotechnologies with the offered solutions of IoT connection (Sigfox and LoRa), new sensors allow the farmer to be connected to his agricultural production by mastering in real time the right contribution needed in water and fertilizer. The sensor designed in this research allows a double measurement of soil moisture and salinity. In order to minimize the destructuring of the ground to insert the sensor, we have designed a cylindrical sensor, easy to insert, with its electronics inside its body to propose a low power electronic architecture capable of measuring and communicating wireless with a LoRa or Sigfox network or even the farmer’s cell phone. This new smart sensor is then compared to the current leaders in agriculture to validate its performance. Finally, the sensor has better performance than commercials, a better response time, a better precision and it will be cheaper. For the salinity measure, it can detect the level of fertilizer in the soil according to the need of farmers.
机构地区 LAAS-CNRS
出处 《Journal of Sensor Technology》 2019年第3期35-43,共9页 传感技术(英文)
关键词 SMART SENSING CONNECTED AGRICULTURE Bi-Frequency Sensor Smart Sensing Connected Agriculture Bi-Frequency Sensor
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部