期刊文献+

Social Media Cyberbullying Detection on Political Violence from Bangla Texts Using Machine Learning Algorithm

Social Media Cyberbullying Detection on Political Violence from Bangla Texts Using Machine Learning Algorithm
下载PDF
导出
摘要 When someone threatens or humiliates another person online by sending those unpleasant messages or comments, this is known as Cyberbullying. Recently, Bangla text has been used much more often on social media. People communicate with others on social media through messages and comments. So bullies use social media as a rich environment to bully others, especially on political issues. Fights over Cyberbullying on political and social media posts are common today. Most of the time, it does a lot of damage. However, few works have been done for monitoring Bangla text on social media & no work has been done yet for detecting the bullying Bangla text on political issues due to the lack of annotated corpora and morphologic analyzers. In this work, we used several machine learning classifiers & a model. That will help to detect the Bangla bullying texts on social media. For this work, 11,000 Bangla texts have been collected from the comments section of political Facebook posts to make a new dataset and labelled the data as either bullied or not. This dataset has been used to train the machine learning classifier. The results indicate that Random Forest achieves superior accuracy of 91.08%. When someone threatens or humiliates another person online by sending those unpleasant messages or comments, this is known as Cyberbullying. Recently, Bangla text has been used much more often on social media. People communicate with others on social media through messages and comments. So bullies use social media as a rich environment to bully others, especially on political issues. Fights over Cyberbullying on political and social media posts are common today. Most of the time, it does a lot of damage. However, few works have been done for monitoring Bangla text on social media & no work has been done yet for detecting the bullying Bangla text on political issues due to the lack of annotated corpora and morphologic analyzers. In this work, we used several machine learning classifiers & a model. That will help to detect the Bangla bullying texts on social media. For this work, 11,000 Bangla texts have been collected from the comments section of political Facebook posts to make a new dataset and labelled the data as either bullied or not. This dataset has been used to train the machine learning classifier. The results indicate that Random Forest achieves superior accuracy of 91.08%.
作者 Md. Tofael Ahmed Almas Hossain Antar Maqsudur Rahman Abu Zafor Muhammad Touhidul Islam Dipankar Das Md. Golam Rashed Md. Tofael Ahmed;Almas Hossain Antar;Maqsudur Rahman;Abu Zafor Muhammad Touhidul Islam;Dipankar Das;Md. Golam Rashed(Department of Information and Communication Technology, Comilla University, Comilla, Bangladesh;Department of Information and Communication Engineering, University of Rajshahi, Rajshahi, Bangladesh;Department of Electrical & Electronics Engineering, University of Rajshahi, Rajshahi, Bangladesh)
出处 《Journal of Intelligent Learning Systems and Applications》 2023年第4期108-122,共15页 智能学习系统与应用(英文)
关键词 CYBERBULLYING Bangla Texts Political Issues Machine Learning Random Forest Social Media Cyberbullying Bangla Texts Political Issues Machine Learning Random Forest Social Media
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部