期刊文献+

Application of Dual-Energy X-Ray Image Detection of Dangerous Goods Based on YOLOv7

Application of Dual-Energy X-Ray Image Detection of Dangerous Goods Based on YOLOv7
下载PDF
导出
摘要 X-ray security equipment is currently a more commonly used dangerous goods detection tool, due to the increasing security work tasks, the use of target detection technology to assist security personnel to carry out work has become an inevitable trend. With the development of deep learning, object detection technology is becoming more and more mature, and object detection framework based on convolutional neural networks has been widely used in industrial, medical and military fields. In order to improve the efficiency of security staff, reduce the risk of dangerous goods missed detection. Based on the data collected in X-ray security equipment, this paper uses a method of inserting dangerous goods into an empty package to balance all kinds of dangerous goods data and expand the data set. The high-low energy images are combined using the high-low energy feature fusion method. Finally, the dangerous goods target detection technology based on the YOLOv7 model is used for model training. After the introduction of the above method, the detection accuracy is improved by 6% compared with the direct use of the original data set for detection, and the speed is 93FPS, which can meet the requirements of the online security system, greatly improve the work efficiency of security personnel, and eliminate the security risks caused by missed detection. X-ray security equipment is currently a more commonly used dangerous goods detection tool, due to the increasing security work tasks, the use of target detection technology to assist security personnel to carry out work has become an inevitable trend. With the development of deep learning, object detection technology is becoming more and more mature, and object detection framework based on convolutional neural networks has been widely used in industrial, medical and military fields. In order to improve the efficiency of security staff, reduce the risk of dangerous goods missed detection. Based on the data collected in X-ray security equipment, this paper uses a method of inserting dangerous goods into an empty package to balance all kinds of dangerous goods data and expand the data set. The high-low energy images are combined using the high-low energy feature fusion method. Finally, the dangerous goods target detection technology based on the YOLOv7 model is used for model training. After the introduction of the above method, the detection accuracy is improved by 6% compared with the direct use of the original data set for detection, and the speed is 93FPS, which can meet the requirements of the online security system, greatly improve the work efficiency of security personnel, and eliminate the security risks caused by missed detection.
作者 Baosheng Liu Fei Wang Ming Gao Lei Zhao Baosheng Liu;Fei Wang;Ming Gao;Lei Zhao(School of Computer Science and Technology, Shandong University of Technology, Zibo, China;Shanghai Wuying Technology Co., Ltd., Shanghai, China)
出处 《Journal of Computer and Communications》 2023年第7期208-225,共18页 电脑和通信(英文)
关键词 X-RAY Dangerous Goods Detection High and Low Energy Image Fusion ACCURACY Real-Time Detection X-Ray Dangerous Goods Detection High and Low Energy Image Fusion Accuracy Real-Time Detection
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部