期刊文献+

The Solution of Nonlinear Equations via the Method of Hurwitz-Radon Matrices

The Solution of Nonlinear Equations via the Method of Hurwitz-Radon Matrices
下载PDF
导出
摘要 Image analysis and computer vision are interested in suitable methods to solve the nonlinear equations. Coordinate x??for f (x)?= 0?is crucial because each equation can be transformed into f (x)?= 0. A novel method of Hurwitz-Radon Matrices (MHR) can be used in approximation of a root of function in the plane. The paper contains a way of data approximation via MHR method to solve any equation. Proposed method is based on the family of Hurwitz-Radon (HR) matrices. The matrices are skew-symmetric and possess columns composed of orthogonal vectors. The operator of Hurwitz-Radon (OHR), built from these matrices, is described. Two-dimensional data are represented by discrete set of curve??f points. It is shown how to create the orthogonal OHR operator and how to use it in a process of data interpolation. MHR method is interpolating the curve point by point without using any formula or function. Image analysis and computer vision are interested in suitable methods to solve the nonlinear equations. Coordinate x??for f (x)?= 0?is crucial because each equation can be transformed into f (x)?= 0. A novel method of Hurwitz-Radon Matrices (MHR) can be used in approximation of a root of function in the plane. The paper contains a way of data approximation via MHR method to solve any equation. Proposed method is based on the family of Hurwitz-Radon (HR) matrices. The matrices are skew-symmetric and possess columns composed of orthogonal vectors. The operator of Hurwitz-Radon (OHR), built from these matrices, is described. Two-dimensional data are represented by discrete set of curve??f points. It is shown how to create the orthogonal OHR operator and how to use it in a process of data interpolation. MHR method is interpolating the curve point by point without using any formula or function.
出处 《Journal of Computer and Communications》 2014年第10期9-16,共8页 电脑和通信(英文)
关键词 Image Analysis Nonlinear Equation ROOT of Function Curve INTERPOLATION Hurwitz-Radon Image Analysis Nonlinear Equation Root of Function Curve Interpolation Hurwitz-Radon
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部