摘要
A configuration point consists of the position and orientation of a rigid body which are fully described by the position of the frame’s origin and the orientation of its axes, relative to the reference frame. We describe an algorithm to robustly predict futuristic configurations of a moving target in a time-varying environment. We use the Kalman filter for tracking and motion prediction purposes because it is a very effective and useful estimator. It implements a predictor-corrector type estimator that is optimal in the sense that it minimizes the estimated error covariance. The target motion is unconstrained. The proposed algorithm may be viewed as a seed for a range of applications, one of which is robot motion planning in a time-changing environment. A significant feature of the proposed algorithm (when compared to similar ones) is its ability to embark the prediction process from the first time step;no need to wait for few time steps as in the autoregressive-based systems. Simulation results supports our claims and demonstrate the superiority of the proposed model.
A configuration point consists of the position and orientation of a rigid body which are fully described by the position of the frame’s origin and the orientation of its axes, relative to the reference frame. We describe an algorithm to robustly predict futuristic configurations of a moving target in a time-varying environment. We use the Kalman filter for tracking and motion prediction purposes because it is a very effective and useful estimator. It implements a predictor-corrector type estimator that is optimal in the sense that it minimizes the estimated error covariance. The target motion is unconstrained. The proposed algorithm may be viewed as a seed for a range of applications, one of which is robot motion planning in a time-changing environment. A significant feature of the proposed algorithm (when compared to similar ones) is its ability to embark the prediction process from the first time step;no need to wait for few time steps as in the autoregressive-based systems. Simulation results supports our claims and demonstrate the superiority of the proposed model.