摘要
This paper mainly elaborates the studies of channel estimation and downlink data transmission in Massive MIMO. As there are different types of interference in single-cell and multi-cell systems, this paper establishes different models for them separately. In terms of uplink training, for getting channel state information, we introduce LS and MMSE channel estimation algorithms and make a comparison between them. At the same time, the problem of pilot contamination is solved by cell classification and pilot identification. Next, this paper defines mathematical models for downlink data transmission. We use pre-coding methods (including Zero-forcing and Maximal Ratio Combining schemes) and optimize power distribution to improve channel capacity and transmission rate. Furthermore, this paper provides numerical results to show the simulation performance in both single-cell and multi-cell systems and extends to prospects in the future.
This paper mainly elaborates the studies of channel estimation and downlink data transmission in Massive MIMO. As there are different types of interference in single-cell and multi-cell systems, this paper establishes different models for them separately. In terms of uplink training, for getting channel state information, we introduce LS and MMSE channel estimation algorithms and make a comparison between them. At the same time, the problem of pilot contamination is solved by cell classification and pilot identification. Next, this paper defines mathematical models for downlink data transmission. We use pre-coding methods (including Zero-forcing and Maximal Ratio Combining schemes) and optimize power distribution to improve channel capacity and transmission rate. Furthermore, this paper provides numerical results to show the simulation performance in both single-cell and multi-cell systems and extends to prospects in the future.