摘要
Wireless networks are key enablers of ubiquitous communication. With the evolution of networking technologies and the need for these to inter-operate and dynamically adapt to user requirements, intelligent networks are the need of the hour. Use of machine learning techniques allows these networks to adapt to changing environments and enables them to make decisions while continuing to learn about their environment. In this paper, we survey the various problems of wireless networks that have been solved using machine-learning based prediction techniques and identify additional problems to which prediction can be applied. We also look at the gaps in the research done in this area till date.
Wireless networks are key enablers of ubiquitous communication. With the evolution of networking technologies and the need for these to inter-operate and dynamically adapt to user requirements, intelligent networks are the need of the hour. Use of machine learning techniques allows these networks to adapt to changing environments and enables them to make decisions while continuing to learn about their environment. In this paper, we survey the various problems of wireless networks that have been solved using machine-learning based prediction techniques and identify additional problems to which prediction can be applied. We also look at the gaps in the research done in this area till date.