期刊文献+

Cryptanalysis of a Substitution-Permutation Network Using Gene Assembly in Ciliates

Cryptanalysis of a Substitution-Permutation Network Using Gene Assembly in Ciliates
下载PDF
导出
摘要 In this paper we provide a novel approach for breaking a significant class of block ciphers, the so-called SPN ciphers, using the process of gene assembly in ciliates. Our proposed scheme utilizes, for the first time, the Turing-powerful potential of gene assembly procedure of ciliated protozoa into the real world computations and has a fewer number of steps than the other proposed schemes to break a cipher. We elaborate notions of formal language theory based on AIR systems, which can be thought of as a modified version of intramolecular scheme to model the ciliate bio-operations, for construction of building blocks necessary for breaking the cipher, and based on these nature-inspired constructions which are as powerful as Turing machines, we propose a theoretical approach for breaking SPN ciphers. Then, we simulate our proposed plan for breaking these ciphers on a sample block cipher based on this structure. Our results show that the proposed scheme has 51.5 percent improvement over the best previously proposed nature-inspired scheme for breaking a cipher. In this paper we provide a novel approach for breaking a significant class of block ciphers, the so-called SPN ciphers, using the process of gene assembly in ciliates. Our proposed scheme utilizes, for the first time, the Turing-powerful potential of gene assembly procedure of ciliated protozoa into the real world computations and has a fewer number of steps than the other proposed schemes to break a cipher. We elaborate notions of formal language theory based on AIR systems, which can be thought of as a modified version of intramolecular scheme to model the ciliate bio-operations, for construction of building blocks necessary for breaking the cipher, and based on these nature-inspired constructions which are as powerful as Turing machines, we propose a theoretical approach for breaking SPN ciphers. Then, we simulate our proposed plan for breaking these ciphers on a sample block cipher based on this structure. Our results show that the proposed scheme has 51.5 percent improvement over the best previously proposed nature-inspired scheme for breaking a cipher.
出处 《International Journal of Communications, Network and System Sciences》 2012年第3期154-164,共11页 通讯、网络与系统学国际期刊(英文)
关键词 Nature-Inspired Computation Accepting INTRAMOLECULAR Recombination (AIR) Systems CRYPTANALYSIS Gene Assembly Block Ciphers Nature-Inspired Computation Accepting Intramolecular Recombination (AIR) Systems Cryptanalysis Gene Assembly Block Ciphers
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部