摘要
The video game presented in this paper is a prey-predator game where two preys (human players) must avoid three predators (automated players) and must reach a location in the game field (the computer screen) called preys’ home. The game is a sequence of matches and the human players (preys) must cooperate in order to achieve the best perform- ance against their opponents (predators). The goal of the predators is to capture the preys, which are the predators try to have a “rendez vous” with the preys, using a small amount of the “resources” available to them. The score of the game is assigned following a set of rules to the prey team, not to the individual prey. In some situations the rules imply that to achieve the best score it is convenient for the prey team to sacrifice one of his components. The video game pursues two main purposes. The first one is to show how the closed loop solution of an optimal control problem and elementary sta- tistics can be used to generate (game) actors whose movements satisfy the laws of classical mechanics and whose be- haviour simulates a simple form of intelligence. The second one is “educational”, in fact the human players in order to be successful in the game must understand the restrictions to their movements posed by the laws of classical mechanics and must cooperate between themselves. The video game has been developed having in mind as players for children aged between five and thirteen years. These children playing the video game acquire an intuitive understanding of the basic laws of classical mechanics (Newton’s dynamical principle) and enjoy cooperating with their teammate. The video game has been experimented on a sample of a few dozen children. The children aged between five and eight years find the game amusing and after playing a few matches develop an intuitive understanding of the laws of classical me- chanics. They are able to cooperate in making fruitful decisions based on the positions of the preys (themselves), of the predators (their opponent
The video game presented in this paper is a prey-predator game where two preys (human players) must avoid three predators (automated players) and must reach a location in the game field (the computer screen) called preys’ home. The game is a sequence of matches and the human players (preys) must cooperate in order to achieve the best perform- ance against their opponents (predators). The goal of the predators is to capture the preys, which are the predators try to have a “rendez vous” with the preys, using a small amount of the “resources” available to them. The score of the game is assigned following a set of rules to the prey team, not to the individual prey. In some situations the rules imply that to achieve the best score it is convenient for the prey team to sacrifice one of his components. The video game pursues two main purposes. The first one is to show how the closed loop solution of an optimal control problem and elementary sta- tistics can be used to generate (game) actors whose movements satisfy the laws of classical mechanics and whose be- haviour simulates a simple form of intelligence. The second one is “educational”, in fact the human players in order to be successful in the game must understand the restrictions to their movements posed by the laws of classical mechanics and must cooperate between themselves. The video game has been developed having in mind as players for children aged between five and thirteen years. These children playing the video game acquire an intuitive understanding of the basic laws of classical mechanics (Newton’s dynamical principle) and enjoy cooperating with their teammate. The video game has been experimented on a sample of a few dozen children. The children aged between five and eight years find the game amusing and after playing a few matches develop an intuitive understanding of the laws of classical me- chanics. They are able to cooperate in making fruitful decisions based on the positions of the preys (themselves), of the predators (their opponent