摘要
Orthogonal frequency division multiplex/offset QAM (OFDM/OQAM) has been proven to be a promising multi-carrier modulation (MCM) technique for the transmission of signals over multipath fading channels. However, OFDM/OQAM has also the intrinsic disadvantage of high peak-to-average-power ratio (PAPR) that should be alleviated. In this paper, a novel selective mapping (SLM) method is proposed for OFDM/OQAM system. Since the pulse shape may cover a few OFDM symbols, the basic principle of the proposed method is to apply the SLM method in the range of the most relevant OFDM symbols. Analysis and simulation results show that, compared to the existing SLM algorithms for OFDM/OQAM system, the proposed method has better PAPR performance and lower computation complexity.
Orthogonal frequency division multiplex/offset QAM (OFDM/OQAM) has been proven to be a promising multi-carrier modulation (MCM) technique for the transmission of signals over multipath fading channels. However, OFDM/OQAM has also the intrinsic disadvantage of high peak-to-average-power ratio (PAPR) that should be alleviated. In this paper, a novel selective mapping (SLM) method is proposed for OFDM/OQAM system. Since the pulse shape may cover a few OFDM symbols, the basic principle of the proposed method is to apply the SLM method in the range of the most relevant OFDM symbols. Analysis and simulation results show that, compared to the existing SLM algorithms for OFDM/OQAM system, the proposed method has better PAPR performance and lower computation complexity.