期刊文献+

Analysis of Geomechanical Properties in Terms of Parametric Discontinuities on Stability of Tunnels Distinct Element Method (Case Study: Water Tunnel of Golab) 被引量:1

Analysis of Geomechanical Properties in Terms of Parametric Discontinuities on Stability of Tunnels Distinct Element Method (Case Study: Water Tunnel of Golab)
下载PDF
导出
摘要 The discontinuities of the rock mass pose a high impact on its response to the static load and make complexity in modeling in such area. Principal objective of this study is to analyze the stability and sensitivity of Golab transfer tunnel access (transfer water from Zayanderud River to Kashan). This tunnel with a length of 5.1 kilometers and inclination of 13.5 percent is located 120 kilometers from Isfahan city. Geologically, this zone is in the range of sediment structure of Sanandaj-Sirjan. The host rock mass consists of Limestone Mesozoic (Cretaceous). The general characteristics of the joints in the rock represent high distance, low persistence, low opening (2 - 3 mm), average roughness and low weathering. Given purpose of the project and the distinct element method is the most useful for modeling rock mass for static analysis. This paper examines the effect of parametric factors on the stability of tunnels via UDEC software, discrete element and empirical method. After modeling, instability of Golab tunnel by increasing the depth is identified and confirmed. RMR, Q and GSI as experimental procedure were employed to classify the rock mass, based on RMR classification. The route rock mass has been taken in I and II categories and based on the Q classification, the path rock masses are recognized acceptable. The discontinuities of the rock mass pose a high impact on its response to the static load and make complexity in modeling in such area. Principal objective of this study is to analyze the stability and sensitivity of Golab transfer tunnel access (transfer water from Zayanderud River to Kashan). This tunnel with a length of 5.1 kilometers and inclination of 13.5 percent is located 120 kilometers from Isfahan city. Geologically, this zone is in the range of sediment structure of Sanandaj-Sirjan. The host rock mass consists of Limestone Mesozoic (Cretaceous). The general characteristics of the joints in the rock represent high distance, low persistence, low opening (2 - 3 mm), average roughness and low weathering. Given purpose of the project and the distinct element method is the most useful for modeling rock mass for static analysis. This paper examines the effect of parametric factors on the stability of tunnels via UDEC software, discrete element and empirical method. After modeling, instability of Golab tunnel by increasing the depth is identified and confirmed. RMR, Q and GSI as experimental procedure were employed to classify the rock mass, based on RMR classification. The route rock mass has been taken in I and II categories and based on the Q classification, the path rock masses are recognized acceptable.
出处 《Open Journal of Geology》 2015年第3期92-105,共14页 地质学期刊(英文)
关键词 UDEC Software Sakurai Equation Sensitivity ANALYSIS Normal STIFFNESS Shear STIFFNESS UDEC Software Sakurai Equation Sensitivity Analysis Normal Stiffness Shear Stiffness
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部