摘要
Samarahan has transformed from a small village into education hub for the past 2 decades. Rapid development and population growth had led to speedy growth in water demand. The situation is getting worse as the pipes are deteriorating due to pipe aging. Therefore, there is a need to study the adequacy of water supply and relationships among roughness coefficient (C) values in Hazen Williams’ Equation with head loss and water pressure due to pipe aging at Uni-Central, a residential area located at Samarahan Sarawak. Investigations were carried out with Ductile Iron, Abestos Cement and Cast Iron pipes at age categories of 0 - 10 years, 10 - 30 years, 30 - 50 years, 50 - 70 years and >70 years. Six critical nodes named as A, B, C, D, E and F were identified to study the water pressure and head loss. Model was developed with InfoWorks Water Supply (WS) Pro software. The impact of pipe aging and materials to water pressure and head loss was not significant at Nodes A, B, C and F. However, max water pressure at Nodes D and F were only reaching 6.30 m and 7.30 m, respectively for all investigations. Therefore, some improvement works are required. Results also show that Asbestos Cement pipe has the least impact on the head loss and water pressure, followed by Ductile Iron pipe and lastly Cast Iron pipe. Simulation results also revealed that older pipes have higher roughness coefficients, indicated with lower “C” values, thus increase the head loss and reduce the water pressure. In contrast, as “C” values increased, head loss will be reduced and water pressure will be increased.
Samarahan has transformed from a small village into education hub for the past 2 decades. Rapid development and population growth had led to speedy growth in water demand. The situation is getting worse as the pipes are deteriorating due to pipe aging. Therefore, there is a need to study the adequacy of water supply and relationships among roughness coefficient (C) values in Hazen Williams’ Equation with head loss and water pressure due to pipe aging at Uni-Central, a residential area located at Samarahan Sarawak. Investigations were carried out with Ductile Iron, Abestos Cement and Cast Iron pipes at age categories of 0 - 10 years, 10 - 30 years, 30 - 50 years, 50 - 70 years and >70 years. Six critical nodes named as A, B, C, D, E and F were identified to study the water pressure and head loss. Model was developed with InfoWorks Water Supply (WS) Pro software. The impact of pipe aging and materials to water pressure and head loss was not significant at Nodes A, B, C and F. However, max water pressure at Nodes D and F were only reaching 6.30 m and 7.30 m, respectively for all investigations. Therefore, some improvement works are required. Results also show that Asbestos Cement pipe has the least impact on the head loss and water pressure, followed by Ductile Iron pipe and lastly Cast Iron pipe. Simulation results also revealed that older pipes have higher roughness coefficients, indicated with lower “C” values, thus increase the head loss and reduce the water pressure. In contrast, as “C” values increased, head loss will be reduced and water pressure will be increased.
作者
King Kuok Kuok
Po Chan Chiu
Danny Chee Ming Ting
King Kuok Kuok;Po Chan Chiu;Danny Chee Ming Ting(Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching, Sarawak, Malaysia;Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia)