摘要
The aim of this study was to evaluate the herbicide glyphosate under aquatic environment conditions, in a controlled and closed experimental field, in the management of water hyacinth (Eichhornia crassipes) in reservoirs. Twenty reservoirs (polyethylene water tanks) with storage capacity of 1000 liters were used, without water flow and without evapotranspired water replacement (worst case), being 04 for each treatment. The adult plants were placed in the water tanks to provide 90% surface occupation of the reservoir. Five treatments with four repetitions were considered, being: 1) Reservoir colonized by water hyacinth without control;2) Reservoir colonized by water hyacinth, controlled by glyphosate;3) Reservoir colonized by water hyacinth, controlled by freezing;4) Reservoir without water hyacinth and glyphosate application and 5) Reservoir without water hyacinth and no glyphosate application. The glyphosate herbicide was used at the highest recommended dose, 7.0 L·ha-1 or 3360 g of acid equivalent per ha, applied using carbon dioxide precision equipment (backpack sprayer), providing a flow rate of 200 L·ha-1. The water samples were collected at the time of application, 6, 12, 18 and 24 hours after application and also at 2, 4, 8, 16, 32 and 64 days after application, in the morning, always at the same time, also between 8 and 9 h. The method used for determination of residues was by high performance liquid chromatography (HPLC) and mass spectrometry with a mass selective detector. Low concentrations of glyphosate and aminomethylphosphonic acid (AMPA) were found in both reservoirs that received application of the product. The half-life of glyphosate in water to the reservoirs with water hyacinth was 11 days and in the reservoirs without water hyacinth was 21 days. The results show a low potential of environmental impact of glyphosate use in the control of water hyacinth in reservoirs.
The aim of this study was to evaluate the herbicide glyphosate under aquatic environment conditions, in a controlled and closed experimental field, in the management of water hyacinth (Eichhornia crassipes) in reservoirs. Twenty reservoirs (polyethylene water tanks) with storage capacity of 1000 liters were used, without water flow and without evapotranspired water replacement (worst case), being 04 for each treatment. The adult plants were placed in the water tanks to provide 90% surface occupation of the reservoir. Five treatments with four repetitions were considered, being: 1) Reservoir colonized by water hyacinth without control;2) Reservoir colonized by water hyacinth, controlled by glyphosate;3) Reservoir colonized by water hyacinth, controlled by freezing;4) Reservoir without water hyacinth and glyphosate application and 5) Reservoir without water hyacinth and no glyphosate application. The glyphosate herbicide was used at the highest recommended dose, 7.0 L·ha-1 or 3360 g of acid equivalent per ha, applied using carbon dioxide precision equipment (backpack sprayer), providing a flow rate of 200 L·ha-1. The water samples were collected at the time of application, 6, 12, 18 and 24 hours after application and also at 2, 4, 8, 16, 32 and 64 days after application, in the morning, always at the same time, also between 8 and 9 h. The method used for determination of residues was by high performance liquid chromatography (HPLC) and mass spectrometry with a mass selective detector. Low concentrations of glyphosate and aminomethylphosphonic acid (AMPA) were found in both reservoirs that received application of the product. The half-life of glyphosate in water to the reservoirs with water hyacinth was 11 days and in the reservoirs without water hyacinth was 21 days. The results show a low potential of environmental impact of glyphosate use in the control of water hyacinth in reservoirs.